
You’ve experienced the shiny, point-and-click surface
of your Linux computer—now dive below and explore
its depths with the power of the command line.

The Linux Command Line takes you from your very first
terminal keystrokes to writing full programs in Bash, the
most popular Linux shell. Along the way you’ll learn
the timeless skills handed down by generations of
gray-bearded, mouse-shunning gurus: file navigation,
environment configuration, command chaining, pattern
matching with regular expressions, and more.

In addition to that practical knowledge, author William
Shotts reveals the philosophy behind these tools and
the rich heritage that your desktop Linux machine has
inherited from Unix supercomputers of yore.

As you make your way through the book’s short, easily
digestible chapters, you’ll learn how to:

• Create and delete files, directories, and symlinks

• Administer your system, including networking,
package installation, and process management

B A N I S H Y O U R
M O U S E

B A N I S H Y O U R
M O U S E

• Use standard input and output, redirection, and
pipelines

• Edit files with Vi, the world’s most popular text editor

• Write shell scripts to automate common or boring tasks

• Slice and dice text files with cut, paste, grep, patch,
and sed

Once you overcome your initial “shell shock,” you’ll
find that the command line is a natural and expressive
way to communicate with your computer. Just don’t be
surprised if your mouse starts to gather dust.

A B O U T T H E A U T H O R

William E. Shotts, Jr., has been a software professional
and avid Linux user for more than 15 years. He has an
extensive background in software development, including
technical support, quality assurance, and documentation.
He is also the creator of LinuxCommand.org, a Linux
education and advocacy site featuring news, reviews,
and extensive support for using the Linux command line.

SHELVE IN
:

COM
PUTERS/LINUX

$49.95 ($52.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

FSC LOGO

 “ I L I E F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut.

A C O M P L E T E I N T R O D U C T I O N

T H E L I N U X
CO M M A N D L I N E

T H E L I N U X
CO M M A N D L I N E

W I L L I A M E . S H O T T S , J R .

T
H

E
 L

IN
U

X
 C

O
M

M
A

N
D

 L
IN

E
T

H
E

 L
IN

U
X

 C
O

M
M

A
N

D
 L

IN
E

S
H

O
T

T
S

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

THE LINUX COMMAND LINE

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

THE LINUX
COMMAND LINE

A C o m p l e t e
I n t r o d u c t i o n

b y W i l l i a m E . S h o t t s , J r .

San Francisco

www.it-ebooks.info

http://www.it-ebooks.info/

THE LINUX COMMAND LINE. Copyright © 2012 by William E. Shotts, Jr.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

16 15 14 13 12 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-389-4
ISBN-13: 978-1-59327-389-7

Publisher: William Pollock
Production Editor: Serena Yang
Cover Design: Octopod Studios
Developmental Editor: Keith Fancher
Technical Reviewer: Therese Bao
Copyeditor: Ward Webber
Compositors: Serena Yang and Alison Law
Proofreader: Paula L. Fleming

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
38 Ringold Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Shotts, William E.
 The Linux command line: a complete introduction / William E. Shotts, Jr.
 p. cm.
 Includes index.
 ISBN-13: 978-1-59327-389-7 (pbk.)
 ISBN-10: 1-59327-389-4 (pbk.)
 1. Linux. 2. Scripting Languages (Computer science) 3. Operating systems (Computers) I. Title.
 QA76.76.O63S5556 2011
 005.4'32--dc23
 2011029198

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to
the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

www.it-ebooks.info

http://www.it-ebooks.info/

To Karen

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

B R I E F C O N T E N T S

Acknowledgments...xxiii

Introduction...xxv

PART 1: LEARNING THE SHELL

Chapter 1: What Is the Shell?...3

Chapter 2: Navigation..7

Chapter 3: Exploring the System...13

Chapter 4: Manipulating Files and Directories..25

Chapter 5: Working with Commands..39

Chapter 6: Redirection..49

Chapter 7: Seeing the World as the Shell Sees It..59

Chapter 8: Advanced Keyboard Tricks..69

Chapter 9: Permissions..77

Chapter 10: Processes...95

PART 2: CONFIGURATION AND THE ENVIRONMENT

Chapter 11: The Environment...109

Chapter 12: A Gentle Introduction to vi...121

Chapter 13: Customizing the Prompt...139

PART 3: COMMON TASKS AND ESSENTIAL TOOLS

Chapter 14: Package Management..149

Chapter 15: Storage Media...159

Chapter 16: Networking...175

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17: Searching for Files..187

Chapter 18: Archiving and Backup...201

Chapter 19: Regular Expressions..215

Chapter 20: Text Processing..233

Chapter 21: Formatting Output...267

Chapter 22: Printing...285

Chapter 23: Compiling Programs...297

PART 4: WRITING SHELL SCRIPTS

Chapter 24: Writing Your First Script..309

Chapter 25: Starting a Project..315

Chapter 26: Top-Down Design...325

Chapter 27: Flow Control: Branching with if..333

Chapter 28: Reading Keyboard Input..347

Chapter 29: Flow Control: Looping with while and until..357

Chapter 30: Troubleshooting..363

Chapter 31: Flow Control: Branching with case...375

Chapter 32: Positional Parameters..381

Chapter 33: Flow Control: Looping with for...393

Chapter 34: Strings and Numbers..399

Chapter 35: Arrays...415

Chapter 36: Exotica..423

Index...433

viii Brief Contents

www.it-ebooks.info

http://www.it-ebooks.info/

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS xxiii

INTRODUCTION xxv
Why Use the Command Line?...xxvi
What This Book Is About..xxvi
Who Should Read This Book..xxvii
What’s in This Book..xxvii
How to Read This Book..xxviii
Prerequisites..xxviii

PART 1
LEARNING THE SHELL

1
WHAT IS THE SHELL? 3
Terminal Emulators..3
Your First Keystrokes..4

Command History..4
Cursor Movement..4

Try Some Simple Commands..5
Ending a Terminal Session...6

2
NAVIGATION 7
Understanding the Filesystem Tree...7
The Current Working Directory...8
Listing the Contents of a Directory...8
Changing the Current Working Directory...9

Absolute Pathnames...9
Relative Pathnames..9
Some Helpful Shortcuts...10

www.it-ebooks.info

http://www.it-ebooks.info/

3
EXPLORING THE SYSTEM 13
More Fun with ls...13

Options and Arguments..14
A Longer Look at Long Format...15

Determining a File’s Type with file...16
Viewing File Contents with less...17
A Guided Tour...19
Symbolic Links..22

4
MANIPULATING FILES AND DIRECTORIES 25
Wildcards..26
mkdir—Create Directories..28
cp—Copy Files and Directories..28
mv—Move and Rename Files...30
rm—Remove Files and Directories...31
ln—Create Links..32

Hard Links...32
Symbolic Links...32

Let’s Build a Playground...33
Creating Directories...33
Copying Files..33
Moving and Renaming Files..34
Creating Hard Links...35
Creating Symbolic Links..36
Removing Files and Directories..37

Final Note..38

5
WORKING WITH COMMANDS 39
What Exactly Are Commands?...40
Identifying Commands...40

type—Display a Command’s Type...40
which—Display an Executable’s Location...41

Getting a Command’s Documentation...41
help—Get Help for Shell Builtins..41
- -help—Display Usage Information...42
man—Display a Program’s Manual Page...42
apropos—Display Appropriate Commands...43
whatis—Display a Very Brief Description of a Command..44
info—Display a Program’s Info Entry..44
README and Other Program Documentation Files...45

Creating Your Own Commands with alias...46
Revisiting Old Friends..47

x Contents in Detail

www.it-ebooks.info

http://www.it-ebooks.info/

6
REDIRECTION 49
Standard Input, Output, and Error...50

Redirecting Standard Output...50
Redirecting Standard Error..51
Redirecting Standard Output and Standard Error to One File..52
Disposing of Unwanted Output..52
Redirecting Standard Input..53

Pipelines..54
Filters...55
uniq—Report or Omit Repeated Lines...55
wc—Print Line, Word, and Byte Counts..55
grep—Print Lines Matching a Pattern..56
head/tail—Print First/Last Part of Files..56
tee—Read from Stdin and Output to Stdout and Files...57

Final Note..58

7
SEEING THE WORLD AS THE SHELL SEES IT 59
Expansion..59

Pathname Expansion..60
Tilde Expansion...61
Arithmetic Expansion..62
Brace Expansion..63
Parameter Expansion..64
Command Substitution..64

Quoting...65
Double Quotes..65
Single Quotes..67
Escaping Characters..67

Final Note..68

8
ADVANCED KEYBOARD TRICKS 69
Command Line Editing...70

Cursor Movement..70
Modifying Text..70
Cutting and Pasting (Killing and Yanking) Text..70

Completion..72
Using History..73

Searching History..74
History Expansion..75

Final Note..76

Contents in Detail xi

www.it-ebooks.info

http://www.it-ebooks.info/

9
PERMISSIONS 77
Owners, Group Members, and Everybody Else..78
Reading, Writing, and Executing..79

chmod—Change File Mode..81
Setting File Mode with the GUI..84
umask—Set Default Permissions...84

Changing Identities...87
su—Run a Shell with Substitute User and Group IDs...87
sudo—Execute a Command as Another User..88
chown—Change File Owner and Group..90
chgrp—Change Group Ownership..91

Exercising Your Privileges..91
Changing Your Password...93

10
PROCESSES 95
How a Process Works...96

Viewing Processes with ps..96
Viewing Processes Dynamically with top...98

Controlling Processes...100
Interrupting a Process...101
Putting a Process in the Background...101
Returning a Process to the Foreground..102
Stopping (Pausing) a Process...102

Signals..103
Sending Signals to Processes with kill...103
Sending Signals to Multiple Processes with killall...106

More Process-Related Commands...106

PART 2
CONFIGURATION AND THE ENVIRONMENT

11
THE ENVIRONMENT 109
What Is Stored in the Environment?...110

Examining the Environment...110
Some Interesting Variables..111

How Is the Environment Established?...112
Login and Non-login Shells...112
What’s in a Startup File?..113

xii Contents in Detail

www.it-ebooks.info

http://www.it-ebooks.info/

Modifying the Environment...115
Which Files Should We Modify?...115
Text Editors...115
Using a Text Editor...116
Activating Our Changes...118

Final Note..119

12
A GENTLE INTRODUCTION TO VI 121
Why We Should Learn vi...122
A Little Background...122
Starting and Stopping vi..122
Editing Modes..123

Entering Insert Mode..124
Saving Our Work..124

Moving the Cursor Around...125
Basic Editing..126

Appending Text...127
Opening a Line...127
Deleting Text...128
Cutting, Copying, and Pasting Text..129
Joining Lines..131

Search and Replace..131
Searching Within a Line...131
Searching the Entire File...131
Global Search and Replace..132

Editing Multiple Files...133
Switching Between Files..134
Opening Additional Files for Editing..134
Copying Content from One File into Another...135
Inserting an Entire File into Another..136

Saving Our Work...137

13
CUSTOMIZING THE PROMPT 139
Anatomy of a Prompt..139
Trying Some Alternative Prompt Designs..141
Adding Color...142
Moving the Cursor..144
Saving the Prompt...146
Final Note..146

Contents in Detail xiii

www.it-ebooks.info

http://www.it-ebooks.info/

PART 3
COMMON TASKS AND ESSENTIAL TOOLS

14
PACKAGE MANAGEMENT 149
Packaging Systems..150
How a Package System Works...150

Package Files..150
Repositories...151
Dependencies..151
High- and Low-Level Package Tools..152

Common Package Management Tasks..152
Finding a Package in a Repository...152
Installing a Package from a Repository...153
Installing a Package from a Package File..153
Removing a Package..154
Updating Packages from a Repository..154
Upgrading a Package from a Package File...154
Listing Installed Packages..155
Determining Whether a Package Is Installed...155
Displaying Information About an Installed Package..155
Finding Which Package Installed a File..156

Final Note..156

15
STORAGE MEDIA 159
Mounting and Unmounting Storage Devices...160

Viewing a List of Mounted Filesystems..161
Determining Device Names...164

Creating New Filesystems..167
Manipulating Partitions with fdisk..167
Creating a New Filesystem with mkfs...169

Testing and Repairing Filesystems...170
Formatting Floppy Disks...171
Moving Data Directly to and from Devices...171
Creating CD-ROM Images...172

Creating an Image Copy of a CD-ROM..172
Creating an Image from a Collection of Files..172

Writing CD-ROM Images...173
Mounting an ISO Image Directly..173
Blanking a Rewritable CD-ROM...173
Writing an Image..173

Extra Credit..174

xiv Contents in Detail

www.it-ebooks.info

http://www.it-ebooks.info/

16
NETWORKING 175
Examining and Monitoring a Network...176

ping—Send a Special Packet to a Network Host...176
traceroute—Trace the Path of a Network Packet..177
netstat—Examine Network Settings and Statistics...178

Transporting Files over a Network...179
ftp—Transfer Files with the File Transfer Protocol..179
lftp—A Better ftp..181
wget—Non-interactive Network Downloader..181

Secure Communication with Remote Hosts...182
ssh—Securely Log in to Remote Computers...182
scp and sftp—Securely Transfer Files..185

17
SEARCHING FOR FILES 187
locate—Find Files the Easy Way...188
find—Find Files the Hard Way...189

Tests...189
Actions...194
A Return to the Playground..198
Options..200

18
ARCHIVING AND BACKUP 201
Compressing Files...202

gzip—Compress or Expand Files...202
bzip2—Higher Compression at the Cost of Speed...204

Archiving Files..205
tar—Tape Archiving Utility..205
zip—Package and Compress Files...209

Synchronizing Files and Directories...211
rsync—Remote File and Directory Synchronization...212
Using rsync over a Network..213

19
REGULAR EXPRESSIONS 215
What Are Regular Expressions?..216
grep—Search Through Text..216
Metacharacters and Literals..217
The Any Character..218
Anchors...219

Contents in Detail xv

www.it-ebooks.info

http://www.it-ebooks.info/

Bracket Expressions and Character Classes..220
Negation..220
Traditional Character Ranges..220
POSIX Character Classes..221

POSIX Basic vs. Extended Regular Expressions...224
Alternation...225
Quantifiers...226

?—Match an Element Zero Times or One Time..226
*—Match an Element Zero or More Times..227
+—Match an Element One or More Times..227
{ }—Match an Element a Specific Number of Times...228

Putting Regular Expressions to Work...229
Validating a Phone List with grep...229
Finding Ugly Filenames with find...230
Searching for Files with locate...230
Searching for Text with less and vim..231

Final Note..232

20
TEXT PROCESSING 233
Applications of Text...234

Documents..234
Web Pages...234
Email..234
Printer Output..234
Program Source Code..235

Revisiting Some Old Friends...235
cat—Concatenate Files and Print on Standard Output..235
sort—Sort Lines of Text Files..236
uniq—Report or Omit Repeated Lines...242

Slicing and Dicing..243
cut—Remove Sections from Each Line of Files..243
paste—Merge Lines of Files...246
join—Join Lines of Two Files on a Common Field...247

Comparing Text..249
comm—Compare Two Sorted Files Line by Line...249
diff—Compare Files Line by Line..250
patch—Apply a diff to an Original..253

Editing on the Fly..254
tr—Transliterate or Delete Characters...254
sed—Stream Editor for Filtering and Transforming Text...256
aspell—Interactive Spell Checker...263

Final Note..266
Extra Credit..266

xvi Contents in Detail

www.it-ebooks.info

http://www.it-ebooks.info/

21
FORMATTING OUTPUT 267
Simple Formatting Tools...268

nl—Number Lines..268
fold—Wrap Each Line to a Specified Length...271
fmt—A Simple Text Formatter..271
pr—Format Text for Printing..274
printf—Format and Print Data..275

Document Formatting Systems...278
The roff Family and TEX..279
groff—A Document Formatting System..279

Final Note..283

22
PRINTING 285
A Brief History of Printing...286

Printing in the Dim Times...286
Character-Based Printers...286
Graphical Printers..287

Printing with Linux...288
Preparing Files for Printing...288

pr—Convert Text Files for Printing..288
Sending a Print Job to a Printer...290

lpr—Print Files (Berkeley Style)...290
lp—Print Files (System V Style)...291
Another Option: a2ps..292

Monitoring and Controlling Print Jobs..294
lpstat—Display Print System Status...294
lpq—Display Printer Queue Status...295
lprm and cancel—Cancel Print Jobs...296

23
COMPILING PROGRAMS 297
What Is Compiling?..298

Are All Programs Compiled?...299
Compiling a C Program...299

Obtaining the Source Code..300
Examining the Source Tree..301
Building the Program..302
Installing the Program...305

Final Note..306

Contents in Detail xvii

www.it-ebooks.info

http://www.it-ebooks.info/

PART 4
WRITING SHELL SCRIPTS

24
WRITING YOUR FIRST SCRIPT 309
What Are Shell Scripts?...309
How to Write a Shell Script..310

Script File Format...310
Executable Permissions...311
Script File Location...311
Good Locations for Scripts..312

More Formatting Tricks..312
Long Option Names...313
Indentation and Line Continuation..313

Final Note..314

25
STARTING A PROJECT 315
First Stage: Minimal Document...315
Second Stage: Adding a Little Data...317
Variables and Constants..318

Creating Variables and Constants..318
Assigning Values to Variables and Constants..320

Here Documents...321
Final Note..323

26
TOP-DOWN DESIGN 325
Shell Functions..326
Local Variables...328
Keep Scripts Running...330
Final Note..332

27
FLOW CONTROL: BRANCHING WITH IF 333
Using if..334
Exit Status..334
Using test...336

File Expressions...336
String Expressions..338
Integer Expressions..340

xviii Contents in Detail

www.it-ebooks.info

http://www.it-ebooks.info/

A More Modern Version of test...341
(())—Designed for Integers..342
Combining Expressions..343
Control Operators: Another Way to Branch...345
Final Note..346

28
READING KEYBOARD INPUT 347
read—Read Values from Standard Input..348

Options..351
Separating Input Fields with IFS...351

Validating Input..353
Menus...355
Final Note..356
Extra Credit..356

29
FLOW CONTROL: LOOPING WITH WHILE AND UNTIL 357
Looping...358
while...358
Breaking out of a Loop..360
until...361
Reading Files with Loops..362
Final Note..362

30
TROUBLESHOOTING 363
Syntactic Errors...363

Missing Quotes...364
Missing or Unexpected Tokens..365
Unanticipated Expansions...365

Logical Errors...366
Defensive Programming..367
Verifying Input...368

Testing...369
Stubs..369
Test Cases...369

Debugging...370
Finding the Problem Area...370
Tracing...371
Examining Values During Execution...373

Final Note..373

Contents in Detail xix

www.it-ebooks.info

http://www.it-ebooks.info/

31
FLOW CONTROL: BRANCHING WITH CASE 375
case..376

Patterns...377
Combining Multiple Patterns..378

Final Note..379

32
POSITIONAL PARAMETERS 381
Accessing the Command Line...381

Determining the Number of Arguments...382
shift—Getting Access to Many Arguments...383
Simple Applications...384
Using Positional Parameters with Shell Functions..385

Handling Positional Parameters En Masse..385
A More Complete Application..387
Final Note..390

33
FLOW CONTROL: LOOPING WITH FOR 393
for: Traditional Shell Form..393
for: C Language Form...396
Final Note..397

34
STRINGS AND NUMBERS 399
Parameter Expansion...399

Basic Parameters...400
Expansions to Manage Empty Variables...400
Expansions That Return Variable Names...401
String Operations..402

Arithmetic Evaluation and Expansion...404
Number Bases...405
Unary Operators...405
Simple Arithmetic...405
Assignment...406
Bit Operations...408
Logic..409

bc—An Arbitrary-Precision Calculator Language..411
Using bc...412
An Example Script...413

Final Note..414
Extra Credit..414

xx Contents in Detail

www.it-ebooks.info

http://www.it-ebooks.info/

35
ARRAYS 415
What Are Arrays?...415
Creating an Array...416
Assigning Values to an Array...416
Accessing Array Elements..417
Array Operations..418

Outputting the Entire Contents of an Array..419
Determining the Number of Array Elements...419
Finding the Subscripts Used by an Array..420
Adding Elements to the End of an Array...420
Sorting an Array..420
Deleting an Array..421

Final Note..422

36
EXOTICA 423
Group Commands and Subshells..423

Performing Redirections..424
Process Substitution..424

Traps...426
Asynchronous Execution..429

wait...429
Named Pipes...430

Setting Up a Named Pipe...431
Using Named Pipes...431

Final Note..432

INDEX 433

Contents in Detail xxi

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

A C K N O W L E D G M E N T S

I want to thank the following people who helped make
this book possible.

First, the people who inspired me: Jenny Watson, Acquisitions Editor
at Wiley Publishing, originally suggested that I write a shell-scripting book.
Though Wiley didn’t accept my proposal, it became the basis of this book.
John C. Dvorak, noted columnist and pundit, gave great advice. In an epis-
ode of his video podcast, “Cranky Geeks,” Mr. Dvorak described the process
of writing: “Hell. Write 200 words a day and in a year, you have a novel.”
This tip led me to write a page a day until I had a book. Dmitri Popov wrote
an article in Free Software Magazine titled “Creating a book template with
Writer,” which inspired me to use OpenOffice.org Writer for composing the
text. As it turned out, it worked wonderfully.

Next, the volunteers who helped me produce the original, freely distrib-
utable version of this book (available at LinuxCommand.org): Mark Polesky
performed an extraordinary review and test of the text. Jesse Becker, Tomasz
Chrzczonowicz, Michael Levin, and Spence Miner also tested and reviewed
portions of the text. Karen M. Shotts contributed a lot of hours editing my
original manuscript.

www.it-ebooks.info

http://www.it-ebooks.info/

Next, the good folks at No Starch Press who worked long and hard mak-
ing the commercial version of my book: Serena Yang, Production Manager;
Keith Fancher, my editor; and the rest of the No Starch Press staff.

And lastly, the readers of LinuxCommand.org, who have sent me so
many kind emails. Their encouragement gave me the idea that I was really
on to something!

xxiv Acknowledgments

www.it-ebooks.info

http://www.it-ebooks.info/

I N T R O D U C T I O N

I want to tell you a story. No, not the story of how,
in 1991, Linus Torvalds wrote the first version of the
Linux kernel. You can read that story in lots of Linux
books. Nor am I going to tell you the story of how,
some years earlier, Richard Stallman began the GNU Project to create a free
Unix-like operating system. That’s an important story too, but most other
Linux books have that one, as well. No, I want to tell you the story of how
you can take back control of your computer.

When I began working with computers as a college student in the late
1970s, there was a revolution going on. The invention of the microprocessor
had made it possible for ordinary people like you and me to actually own a
computer. It’s hard for many people today to imagine what the world was
like when only big business and big government ran all the computers. Let’s
just say you couldn’t get much done.

Today, the world is very different. Computers are everywhere, from tiny
wristwatches to giant data centers to everything in between. In addition to

www.it-ebooks.info

http://www.it-ebooks.info/

ubiquitous computers, we also have a ubiquitous network connecting them
together. This has created a wondrous new age of personal empowerment
and creative freedom, but over the last couple of decades something else
has been happening. A single giant corporation has been imposing its con-
trol over most of the world’s computers and deciding what you can and can-
not do with them. Fortunately, people from all over the world are doing
something about it. They are fighting to maintain control of their com-
puters by writing their own software. They are building Linux.

Many people speak of “freedom” with regard to Linux, but I don’t think
most people know what this freedom really means. Freedom is the power to
decide what your computer does, and the only way to have this freedom is to
know what your computer is doing. Freedom is a computer that is without
secrets, one where everything can be known if you care enough to find out.

Why Use the Command Line?
Have you ever noticed in the movies when the “super hacker”—you know,
the guy who can break into the ultra-secure military computer in under 30
seconds—sits down at the computer, he never touches a mouse? It’s because
movie makers realize that we, as human beings, instinctively know the only
way to really get anything done on a computer is by typing on a keyboard.

Most computer users today are familiar with only the graphical user interface
(GUI) and have been taught by vendors and pundits that the command line
interface (CLI) is a terrifying thing of the past. This is unfortunate, because a
good command line interface is a marvelously expressive way of communi-
cating with a computer in much the same way the written word is for human
beings. It’s been said that “graphical user interfaces make easy tasks easy, while
command line interfaces make difficult tasks possible,” and this is still very
true today.

Since Linux is modeled after the Unix family of operating systems, it
shares the same rich heritage of command line tools as Unix. Unix came into
prominence during the early 1980s (although it was first developed a decade
earlier), before the widespread adoption of the graphical user interface and,
as a result, developed an extensive command line interface instead. In fact,
one of the strongest reasons early adopters of Linux chose it over, say, Win-
dows NT was the powerful command line interface, which made the “diffi-
cult tasks possible.”

What This Book Is About
This book is a broad overview of “living” on the Linux command line.
Unlike some books that concentrate on just a single program, such as the
shell program, bash, this book will try to convey how to get along with the
command line interface in a larger sense. How does it all work? What can it
do? What’s the best way to use it?

xxvi Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

This is not a book about Linux system administration. While any serious
discussion of the command line will invariably lead to system administration
topics, this book touches on only a few administration issues. It will, how-
ever, prepare the reader for additional study by providing a solid founda-
tion in the use of the command line, an essential tool for any serious system
administration task.

This book is very Linux-centric. Many other books try to broaden their
appeal by including other platforms, such as generic Unix and Mac OS X. In
doing so, they “water down” their content to feature only general topics. This
book, on the other hand, covers only contemporary Linux distributions. Ninety-
five percent of the content is useful for users of other Unix-like systems, but
this book is highly targeted at the modern Linux command line user.

Who Should Read This Book
This book is for new Linux users who have migrated from other platforms.
Most likely you are a “power user” of some version of Microsoft Windows.
Perhaps your boss has told you to administer a Linux server, or maybe you’re
just a desktop user who is tired of all the security problems and want to give
Linux a try. That’s fine. All are welcome here.

That being said, there is no shortcut to Linux enlightenment. Learning
the command line is challenging and takes real effort. It’s not that it’s so
hard, but rather it’s so vast. The average Linux system has literally thousands
of programs you can employ on the command line. Consider yourself warned:
Learning the command line is not a casual endeavor.

On the other hand, learning the Linux command line is extremely
rewarding. If you think you’re a “power user” now, just wait. You don’t know
what real power is—yet. And, unlike many other computer skills, knowledge
of the command line is long lasting. The skills learned today will still be use-
ful 10 years from now. The command line has survived the test of time.

It is also assumed that you have no programming experience—not to
worry. We’ll start you down that path as well.

What’s in This Book
This material is presented in a carefully chosen sequence, much as though
a tutor were sitting next to you, guiding you along. Many authors treat this
material in a “systematic” fashion, which makes sense from a writer’s per-
spective but can be very confusing to new users.

Another goal is to acquaint you with the Unix way of thinking, which
is different from the Windows way of thinking. Along the way, we’ll go on a
few side trips to help you understand why certain things work the way they
do and how they got that way. Linux is not just a piece of software; it’s also
a small part of the larger Unix culture, which has its own language and his-
tory. I might throw in a rant or two, as well.

Introduction xxvii

www.it-ebooks.info

http://www.it-ebooks.info/

This book is divided into four parts, each covering some aspect of the
command line experience:

Part 1: Learning the Shell starts our exploration of the basic language of
the command line, including such things as the structure of commands,
filesystem navigation, command line editing, and finding help and doc-
umentation for commands.

Part 2: Configuration and the Environment covers editing configuration
files that control the computer’s operation from the command line.

Part 3: Common Tasks and Essential Tools explores many of the ordi-
nary tasks that are commonly performed from the command line. Unix-
like operating systems, such as Linux, contain many “classic” command-
line programs that are used to perform powerful operations on data.

Part 4: Writing Shell Scripts introduces shell programming, an admit-
tedly rudimentary, but easy to learn, technique for automating many
common computing tasks. By learning shell programming, you will
become familiar with concepts that can be applied to many other
programming languages.

How to Read This Book
Start at the beginning of the book and follow it to the end. It isn’t written
as a reference work; it’s really more like a story with a beginning, a middle,
and an end.

Prerequisites
To use this book, all you will need is a working Linux installation. You can
get this in one of two ways:

Install Linux on a (not so new) computer. It doesn’t matter which dis-
tribution you choose, though most people today start out with Ubuntu,
Fedora, or OpenSUSE. If in doubt, try Ubuntu first. Installing a modern
Linux distribution can be ridiculously easy or ridiculously difficult,
depending on your hardware. I suggest a desktop computer that is a
couple of years old and has at least 256MB of RAM and 6GB of free
hard disk space. Avoid laptops and wireless networks if at all possible,
as these are often more difficult to get working.

Use a live CD. One of the cool things you can do with many Linux distri-
butions is run them directly from a CD-ROM without installing them
at all. Just go into your BIOS setup, set your computer to “Boot from
CDROM,” insert the live CD, and reboot. Using a live CD is a great way

xxviii Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

to test a computer for Linux compatibility prior to installation. The dis-
advantage of using a live CD is that it may be very slow compared to hav-
ing Linux installed on your hard drive. Both Ubuntu and Fedora (among
others) have live CD versions.

Note: Regardless of how you install Linux, you will need to have occasional superuser (i.e.,
administrative) privileges to carry out the lessons in this book.

After you have a working installation, start reading and follow along
with your own computer. Most of the material in this book is “hands on,”
so sit down and get typing!

W H Y I D O N ’ T C A L L I T “ G N U / L I N U X ”

In some quarters, it’s politically correct to call the Linux operating system the
“GNU/Linux operating system.” The problem with “Linux” is that there is no
completely correct way to name it because it was written by many different people
in a vast, distributed development effort. Technically speaking, Linux is the name
of the operating system’s kernel, nothing more. The kernel is very important, of
course, since it makes the operating system go, but it’s not enough to form a
complete operating system.

Enter Richard Stallman, the genius-philosopher who founded the Free
Software movement, started the Free Software Foundation, formed the GNU
Project, wrote the first version of the GNU C Compiler (GCC), created the GNU
General Public License (the GPL), etc., etc. He insists that you call it “GNU/Linux”
to properly reflect the contributions of the GNU Project. While the GNU Pro-
ject predates the Linux kernel and the project’s contributions are extremely
deserving of recognition, placing them in the name is unfair to everyone else
who made significant contributions. Besides, I think “Linux/GNU” would be
more technically accurate since the kernel boots first and everything else runs
on top of it.

In popular usage, “Linux” refers to the kernel and all the other free and
open source software found in the typical Linux distribution—that is, the
entire Linux ecosystem, not just the GNU components. The operating system
marketplace seems to prefer one-word names such as DOS, Windows, Solaris,
Irix, AIX. I have chosen to use the popular format. If, however, you prefer to
use “GNU/Linux” instead, please perform a mental search and replace while
reading this book. I won’t mind.

Introduction xxix

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PART 1
L E A R N I N G T H E S H E L L

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

W H A T I S T H E S H E L L ?

When we speak of the command line, we are really
referring to the shell. The shell is a program that takes
keyboard commands and passes them to the operating
system to carry out. Almost all Linux distributions sup-
ply a shell program from the GNU Project called bash.
The name bash is an acronym for Bourne Again Shell, a
reference to the fact that bash is an enhanced replace-
ment for sh, the original Unix shell program written
by Steve Bourne.

Terminal Emulators
When using a graphical user interface, we need another program called
a terminal emulator to interact with the shell. If we look through our desk-
top menus, we will probably find one. KDE uses konsole and GNOME uses
gnome-terminal, though it’s likely called simply “terminal” on our menu. A

www.it-ebooks.info

http://www.it-ebooks.info/

number of other terminal emulators are available for Linux, but they all do
basically the same thing: give us access to the shell. You will probably develop
a preference for one or another based on the number of bells and whistles
it has.

Your First Keystrokes
So let’s get started. Launch the terminal emulator! Once it comes up, you
should see something like this:

[me@linuxbox ~]$

This is called a shell prompt, and it appears whenever the shell is ready
to accept input. While it may vary in appearance somewhat, depending on
the distribution, it will usually include your username@machinename, followed
by the current working directory (more about that in a little bit) and a dol-
lar sign.

If the last character of the prompt is a hash mark (#) rather than a dol-
lar sign, the terminal session has superuser privileges. This means that either
we are logged in as the root user or we’ve selected a terminal emulator that
provides superuser (administrative) privileges.

Assuming that things are good so far, let’s try some typing. Enter some
gibberish at the prompt like so:

[me@linuxbox ~]$ kaekfjaeifj

Since this command makes no sense, the shell tells us so and gives us
another chance:

bash: kaekfjaeifj: command not found
[me@linuxbox ~]$

Command History
If we press the up-arrow key, we see that the previous command kaekfjaeifj
reappears after the prompt. This is called command history. Most Linux distri-
butions remember the last 500 commands by default. Press the down-arrow
key, and the previous command disappears.

Cursor Movement
Recall the previous command with the up-arrow key again. Now try the left-
and right-arrow keys. See how we can position the cursor anywhere on the
command line? This makes editing commands easy.

4 Chapter 1

www.it-ebooks.info

http://www.it-ebooks.info/

A F E W W O R D S A B O U T M I C E A N D F O C U S

While the shell is all about the keyboard, you can also use a mouse with your
terminal emulator. A mechanism built into the X Window System (the under-
lying engine that makes the GUI go) supports a quick copy-and-paste tech-
nique. If you highlight some text by holding down the left mouse button and
dragging the mouse over it (or double-clicking a word), it is copied into a buf-
fer maintained by X. Pressing the middle mouse button will cause the text to be
pasted at the cursor location. Try it.

Don’t be tempted to use CTRL-C and CTRL-V to perform copy and paste
inside a terminal window. They don’t work. For the shell, these control codes
have different meanings that were assigned many years before Microsoft Win-
dows came on the scene.

Your graphical desktop environment (most likely KDE or GNOME), in
an effort to behave like Windows, probably has its focus policy set to “click to
focus.” This means for a window to get focus (become active), you need to
click it. This is contrary to the traditional X behavior of “focus follows mouse,”
which means that a window gets focus when the mouse just passes over it. The
window will not come to the foreground until you click it, but it will be able to
receive input. Setting the focus policy to “focus follows mouse” will make using
terminal windows easier. Give it a try. I think if you give it a chance, you will
prefer it. You will find this setting in the configuration program for your win-
dow manager.

Try Some Simple Commands
Now that we have learned to type, let s try a few simple commands. The first
one is date. This command displays the current time and date:

[me@linuxbox ~]$ date
Thu Oct 25 13:51:54 EDT 2012

A related command is cal, which, by default, displays a calendar of the
current month:

[me@linuxbox ~]$ cal
 October 2012
Su Mo Tu We Th Fr Sa
 1 2 3 4 5 6
 7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

What Is the Shell? 5
www.it-ebooks.info

http://www.it-ebooks.info/

To see the current amount of free space on your disk drives, enter df:

[me@linuxbox ~]$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 15115452 5012392 9949716 34% /
/dev/sda5 59631908 26545424 30008432 47% /home
/dev/sda1 147764 17370 122765 13% /boot
tmpfs 256856 0 256856 0% /dev/shm

Likewise, to display the amount of free memory, enter the free
command:

[me@linuxbox ~]$ free
 total used free shared buffers cached
Mem: 513712 503976 9736 0 5312 122916
-/+ buffers/cache: 375748 137964
Swap: 1052248 104712 947536

Ending a Terminal Session
We can end a terminal session by either closing the terminal emulator win-
dow or entering the exit command at the shell prompt:

[me@linuxbox ~]$ exit

T H E C O N S O L E B E H I N D T H E C U R T A I N

Even if we have no terminal emulator running, several terminal sessions con-
tinue to run behind the graphical desktop. Called virtual terminals or virtual
consoles, these sessions can be accessed on most Linux distributions by pressing
CTRL-ALT-F1 through CTRL-ALT-F6 on most systems. When a session is accessed, it
presents a login prompt into which we can enter our username and password.
To switch from one virtual console to another, press ALT and F1–F6. To return
to the graphical desktop, press ALT-F7.

6 Chapter 1

www.it-ebooks.info

http://www.it-ebooks.info/

N A V I G A T I O N

The first thing we need to learn (besides just typing)
is how to navigate the filesystem on our Linux sys-
tem. In this chapter we will introduce the following
commands:

pwd—Print name of current working directory.

cd—Change directory.

ls—List directory contents.

Understanding the Filesystem Tree
Like Windows, a Unix-like operating system such as Linux organizes its files
in what is called a hierarchical directory structure. This means that they are organ-
ized in a tree-like pattern of directories (sometimes called folders in other
systems), which may contain files and other directories. The first directory
in the filesystem is called the root directory. The root directory contains files
and subdirectories, which contain more files and subdirectories, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Note that unlike Windows, which has a separate filesystem tree for each
storage device, Unix-like systems such as Linux always have a single filesystem
tree, regardless of how many drives or storage devices are attached to the
computer. Storage devices are attached (or more correctly, mounted) at vari-
ous points on the tree according to the whims of the system administrator, the
person (or persons) responsible for the maintenance of the system.

The Current Working Directory
Most of us are probably familiar with a graphical
file manager, which represents the filesystem tree,
as in Figure 2-1. Notice that the tree is usually shown
upended, that is, with the root at the top and the
various branches descending below.

However, the command line has no pictures,
so to navigate the filesystem tree, we need to think
of it in a different way.

Imagine that the filesystem is a maze shaped
like an upside-down tree and we are able to stand
in the middle of it. At any given time, we are inside
a single directory and we can see the files contained
in the directory and the pathway to the directory
above us (called the parent directory) and any sub-
directories below us. The directory we are standing in is called the current
working directory. To display the current working directory, we use the pwd
(print working directory) command:

[me@linuxbox ~]$ pwd
/home/me

When we first log in to our system (or start a terminal emulator session),
our current working directory is set to our home directory. Each user account
is given its own home directory, which is the only place the user is allowed
to write files when operating as a regular user.

Listing the Contents of a Directory
To list the files and directories in the current working directory, we use the
ls command:

[me@linuxbox ~]$ ls
Desktop Documents Music Pictures Public Templates Videos

Actually, we can use the ls command to list the contents of any direct-
ory, not just the current working directory, and it can do many other fun
things as well. We’ll spend more time with ls in Chapter 3.

8 Chapter 2

Figure 2-1: Filesystem tree
as shown by a graphical
file manager

www.it-ebooks.info

http://www.it-ebooks.info/

Changing the Current Working Directory
To change your working directory (where we are standing in our tree-
shaped maze) we use the cd command: Type cd followed by the pathname
of the desired working directory. A pathname is the route we take along the
branches of the tree to get to the directory we want. Pathnames can be spe-
cified in one of two ways, as absolute pathnames or as relative pathnames.
Let’s deal with absolute pathnames first.

Absolute Pathnames
An absolute pathname begins with the root directory and follows the tree
branch by branch until the path to the desired directory or file is com-
pleted. For example, there is a directory on your system in which most of
your system’s programs are installed. The pathname of that directory is
/usr/bin. This means from the root directory (represented by the leading
slash in the pathname) there is a directory called usr that contains a direct-
ory called bin.

[me@linuxbox ~]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin
[me@linuxbox bin]$ ls

...Listing of many, many files ...

Now we can see that we have changed the current working directory to
/usr/bin and that it is full of files. Notice how the shell prompt has changed?
As a convenience, it is usually set up to automatically display the name of
the working directory.

Relative Pathnames
Where an absolute pathname starts from the root directory and leads to its
destination, a relative pathname starts from the working directory. To do this,
it uses a couple of special symbols to represent relative positions in the file-
system tree. These special symbols are . (dot) and .. (dot dot).

The . symbol refers to the working directory and the .. symbol refers
to the working directory’s parent directory. Here is how it works. Let’s
change the working directory to /usr/bin again:

[me@linuxbox ~]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin

Navigation 9
www.it-ebooks.info

http://www.it-ebooks.info/

Okay, now let’s say that we wanted to change the working directory to
the parent of /usr/bin, which is /usr. We could do that two different ways,
either with an absolute pathname:

[me@linuxbox bin]$ cd /usr
[me@linuxbox usr]$ pwd
/usr

or with a relative pathname:

[me@linuxbox bin]$ cd ..
[me@linuxbox usr]$ pwd
/usr

Two different methods produce identical results. Which one should we
use? The one that requires the least typing!

Likewise, we can change the working directory from /usr to /usr/bin in
two different ways, either by using an absolute pathname:

[me@linuxbox usr]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin

or with a relative pathname:

[me@linuxbox usr]$ cd ./bin
[me@linuxbox bin]$ pwd
/usr/bin

Now, there is something important that I must point out here. In almost
all cases, you can omit the ./ because it is implied. Typing

[me@linuxbox usr]$ cd bin

does the same thing. In general, if you do not specify a pathname to some-
thing, the working directory will be assumed.

Some Helpful Shortcuts
In Table 2-1 we see some useful ways the current working directory can be
quickly changed.

Table 2-1: cd Shortcuts

Shortcut Result

cd Changes the working directory to your home directory.

cd - Changes the working directory to the previous working
directory.

cd ~username Changes the working directory to the home directory of
username. For example, cd ~bob changes the directory to
the home directory of user bob.

10 Chapter 2

www.it-ebooks.info

http://www.it-ebooks.info/

I M P O R T A N T F A C T S A B O U T F I L E N A M E S

Filenames that begin with a period character are hidden. This only
means that ls will not list them unless you say ls -a. When your account
was created, several hidden files were placed in your home directory to
configure things for your account. Later on we will take a closer look at
some of those files to see how you can customize your environment. In
addition, some applications place their configuration and settings files
in your home directory as hidden files.

Filenames and commands in Linux, as in Unix, are case sensitive. The file-
names File1 and file1 refer to different files.

Linux has no concept of a “file extension” like some other operating sys-
tems. You may name files any way you like. The contents and/or purpose
of a file is determined by other means. Although Unix-like operating sys-
tems don’t use file extensions to determine the contents/purpose of files,
some application programs do.

Though Linux supports long filenames that may contain embedded spaces
and punctuation characters, limit the punctuation characters in the names
of files you create to period, dash (hyphen), and underscore. Most impor-
tantly, do not embed spaces in filenames. Embedding spaces in filenames
will make many command line tasks more difficult, as we will discover in
Chapter 7. If you want to represent spaces between words in a filename,
use underscore characters. You will thank yourself later.

Navigation 11
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

E X P L O R I N G T H E S Y S T E M

Now that we know how to move around the filesystem,
it’s time for a guided tour of our Linux system. Before
we start, however, we’re going to learn some more
commands that will be useful along the way:

ls—List directory contents.

file—Determine file type.

less—View file contents.

More Fun with ls
ls is probably the most used command and for good reason. With it, we can
see directory contents and determine a variety of important file and direct-
ory attributes. As we have seen, we can simply enter ls to see a list of files
and subdirectories contained in the current working directory:

[me@linuxbox ~]$ ls
Desktop Documents Music Pictures Public Templates Videos

www.it-ebooks.info

http://www.it-ebooks.info/

Besides the current working directory, we can specify the directory to
list, like so:

me@linuxbox ~]$ ls /usr
bin games kerberos libexec sbin src
etc include lib local share tmp

or even specify multiple directories. In this example we will list both
the user’s home directory (symbolized by the ~ character) and the /usr
directory:

[me@linuxbox ~]$ ls ~ /usr
/home/me:
Desktop Documents Music Pictures Public Templates Videos
/usr:
bin games kerberos libexec sbin src
etc include lib local share tmp

We can also change the format of the output to reveal more detail:

[me@linuxbox ~]$ ls -l
total 56
drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Desktop
drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Documents
drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Music
drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Pictures
drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Public
drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Templates
drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Videos

By adding -l to the command, we changed the output to the long
format.

Options and Arguments
This brings us to a very important point about how most commands work.
Commands are often followed by one or more options that modify their
behavior and, further, by one or more arguments, the items upon which
the command acts. So most commands look something like this:

command -options arguments

Most commands use options consisting of a single character preceded
by a dash, such as -l. But many commands, including those from the GNU
Project, also support long options, consisting of a word preceded by two dashes.
Also, many commands allow multiple short options to be strung together. In
this example, the ls command is given two options, the l option to produce
long format output, and the t option to sort the result by the file’s modifica-
tion time:

[me@linuxbox ~]$ ls -lt

14 Chapter 3

www.it-ebooks.info

http://www.it-ebooks.info/

We’ll add the long option --reverse to reverse the order of the sort:

[me@linuxbox ~]$ ls -lt --reverse

The ls command has a large number of possible options. The most
common are listed in Table 3-1.

Table 3-1: Common ls Options

Option Long Option Description

-a --all List all files, even those with names that begin
with a period, which are normally not listed
(i.e., hidden).

-d --directory Ordinarily, if a directory is specified, ls
will list the contents of the directory, not the
directory itself. Use this option in conjunction
with the -l option to see details about the
directory rather than its contents.

-F --classify This option will append an indicator character
to the end of each listed name (for example, a
forward slash if the name is a directory).

-h --human-readable In long format listings, display file sizes in
human-readable format rather than in bytes.

-l Display results in long format.

-r --reverse Display the results in reverse order. Normally,
ls displays its results in ascending alpha-
betical order.

-S Sort results by file size.

-t Sort by modification time.

A Longer Look at Long Format
As we saw before, the -l option causes ls to display its results in long format.
This format contains a great deal of useful information. Here is the Examples
directory from an Ubuntu system:

-rw-r--r-- 1 root root 3576296 2012-04-03 11:05 Experience ubuntu.ogg
-rw-r--r-- 1 root root 1186219 2012-04-03 11:05 kubuntu-leaflet.png
-rw-r--r-- 1 root root 47584 2012-04-03 11:05 logo-Edubuntu.png
-rw-r--r-- 1 root root 44355 2012-04-03 11:05 logo-Kubuntu.png
-rw-r--r-- 1 root root 34391 2012-04-03 11:05 logo-Ubuntu.png
-rw-r--r-- 1 root root 32059 2012-04-03 11:05 oo-cd-cover.odf
-rw-r--r-- 1 root root 159744 2012-04-03 11:05 oo-derivatives.doc
-rw-r--r-- 1 root root 27837 2012-04-03 11:05 oo-maxwell.odt
-rw-r--r-- 1 root root 98816 2012-04-03 11:05 oo-trig.xls

Exploring the System 15
www.it-ebooks.info

http://www.it-ebooks.info/

-rw-r--r-- 1 root root 453764 2012-04-03 11:05 oo-welcome.odt
-rw-r--r-- 1 root root 358374 2012-04-03 11:05 ubuntu Sax.ogg

Let’s look at the different fields from one of the files and examine their
meanings in Table 3-2.

Table 3-2: ls Long Listing Fields

Field Meaning

-rw-r—r-- Access rights to the file. The first character indicates
the type of file. Among the different types, a leading
dash means a regular file, while a d indicates a
directory. The next three characters are the access
rights for the file’s owner, the next three are for mem-
bers of the file’s group, and the final three are for
everyone else. The full meaning of this is discussed
in Chapter 9.

1 File’s number of hard links. See the discussion of links
at the end of this chapter.

root The user name of the file’s owner.

root The name of the group that owns the file.

32059 Size of the file in bytes.

2012-04-03 11:05 Date and time of the file’s last modification.

oo-cd-cover.odf Name of the file.

Determining a File’s Type with file
As we explore the system, it will be useful to know what files contain. To
do this, we will use the file command to determine a file’s type. As we dis-
cussed earlier, filenames in Linux are not required to reflect a file’s con-
tents. For example, while a filename like picture.jpg would normally be
expected to contain a JPEG compressed image, it is not required to in
Linux. We can invoke the file command this way:

file filename

When invoked, the file command will print a brief description of the
file’s contents. For example:

[me@linuxbox ~]$ file picture.jpg
picture.jpg: JPEG image data, JFIF standard 1.01

16 Chapter 3

www.it-ebooks.info

http://www.it-ebooks.info/

There are many kinds of files. In fact, one of the common ideas in Unix-
like operating systems such as Linux is that “everything is a file.” As we pro-
ceed with our lessons, we will see just how true that statement is.

While many of the files on your system are familiar, for example MP3
and JPEG files, many kinds are a little less obvious, and a few are quite
strange.

Viewing File Contents with less
The less command is a program to view text files. Throughout our Linux
system, there are many files that contain human-readable text. The less pro-
gram provides a convenient way to examine them.

Why would we want to examine text files? Because many of the files that
contain system settings (called configuration files) are stored in this format,
being able to read them gives us insight about how the system works. In
addition, many of the actual programs that the system uses (called scripts)
are stored in this format. In later chapters, we will learn how to edit text
files in order to modify system settings and write our own scripts, but for
now we will just look at their contents.

W H A T I S “ T E X T ” ?

There are many ways to represent information on a computer. All methods
involve defining a relationship between the information and some numbers
that will be used to represent it. Computers, after all, understand only num-
bers, and all data is converted to numeric representation.

Some of these representation systems are very complex (such as com-
pressed video files), while others are rather simple. One of the earliest and
simplest is called ASCII text. ASCII (pronounced “As-Key”) is short for Amer-
ican Standard Code for Information Interchange. This simple encoding
scheme was first used on Teletype machines.

Text is a simple one-to-one mapping of characters to numbers. It is very
compact. Fifty characters of text translate to fifty bytes of data. It is not the same
as text in a word processor document such as one created by Microsoft Word or
OpenOffice.org Writer. Those files, in contrast to simple ASCII text, contain
many non-text elements that are used to describe their structure and format-
ting. Plain ASCII text files contain only the characters themselves and a few
rudimentary control codes like tabs, carriage returns, and linefeeds.

Throughout a Linux system, many files are stored in text format, and many
Linux tools work with text files. Even Windows recognizes the importance of
this format. The well-known Notepad program is an editor for plain ASCII text
files.

Exploring the System 17
www.it-ebooks.info

http://www.it-ebooks.info/

The less command is used like this:

less filename

Once started, the less program allows you to scroll forward and back-
ward through a text file. For example, to examine the file that defines all
the system’s user accounts, enter the following command:

[me@linuxbox ~]$ less /etc/passwd

Once the less program starts, we can view the contents of the file. If the
file is longer than one page, we can scroll up and down. To exit less, press
the Q key.

Table 3-3 lists the most common keyboard commands used by less.

Table 3-3: less Commands

Command Action

PAGE UP or b Scroll back one page.

PAGE DOWN or
Spacebar

Scroll forward one page.

Up Arrow Scroll up one line.

Down Arrow Scroll down one line.

G Move to the end of the text file.

1G or g Move to the beginning of the text file.

/characters Search forward to the next occurrence of characters.

n Search for the next occurrence of the previous search.

h Display help screen.

q Quit less.

L E S S I S M O R E

The less program was designed as an improved replacement of an earlier Unix
program called more. Its name is a play on the phrase “less is more”—a motto of
modernist architects and designers.

less falls into the class of programs called pagers, programs that allow the
easy viewing of long text documents in a page-by-page manner. Whereas the
more program could only page forward, the less program allows paging both
forward and backward and has many other features as well.

18 Chapter 3

www.it-ebooks.info

http://www.it-ebooks.info/

A Guided Tour
The filesystem layout on your Linux system is much like that found on other
Unix-like systems. The design is actually specified in a published standard
called the Linux Filesystem Hierarchy Standard. Not all Linux distributions con-
form to the standard exactly, but most come pretty close.

Next, we are going to wander around the filesystem ourselves to see
what makes our Linux system tick. This will give you a chance to practice
your navigation skills. One of the things we will discover is that many of the
interesting files are in plain, human-readable text. As we go about our tour,
try the following:

1. cd into a given directory.

2. List the directory contents with ls -l.

3. If you see an interesting file, determine its contents with file.

4. If it looks as if it might be text, try viewing it with less.

Note: Remember the copy-and-paste trick! If you are using a mouse, you can double-click a
filename to copy it and middle-click to paste it into commands.

As we wander around, don’t be afraid to look at stuff. Regular users are
largely prohibited from messing things up. That’s the system administrator’s
job! If a command complains about something, just move on to something
else. Spend some time looking around. The system is ours to explore.
Remember, in Linux, there are no secrets!

Table 3-4 lists just a few of the directories we can explore. Feel free to
try more!

Table 3-4: Directories Found on Linux Systems

Directory Comments

/ The root directory, where everything begins.

/bin Contains binaries (programs) that must be present for the
system to boot and run.

/boot Contains the Linux kernel, initial RAM disk image (for
drivers needed at boot time), and the boot loader.

Interesting files:
/boot/grub/grub.conf or menu.lst, which are used to
configure the boot loader
/boot/vmlinuz, the Linux kernel

Exploring the System 19

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Table 3-4 (continued)

Directory Comments

/dev This is a special directory that contains device nodes.
“Everything is a file” also applies to devices. Here is
where the kernel maintains a list of all the devices it
understands.

/etc The /etc directory contains all of the system-wide
configuration files. It also contains a collection of shell
scripts that start each of the system services at boot time.
Everything in this directory should be readable text.

Interesting files: While everything in /etc is interesting,
here are some of my all-time favorites:

/etc/crontab, a file that defines when automated jobs
will run
/etc/fstab, a table of storage devices and their
associated mount points
/etc/passwd, a list of the user accounts

/home In normal configurations, each user is given a directory
in /home. Ordinary users can write files only in their
home directories. This limitation protects the system from
errant user activity.

/lib Contains shared library files used by the core system
programs. These are similar to DLLs in Windows.

/lost+found Each formatted partition or device using a Linux file-
system, such as ext3, will have this directory. It is used
in the case of a partial recovery from a filesystem cor-
ruption event. Unless something really bad has hap-
pened to your system, this directory will remain empty.

/media On modern Linux systems the /media directory will
contain the mount points for removable media such
as USB drives, CD-ROMs, etc. that are mounted
automatically at insertion.

/mnt On older Linux systems, the /mnt directory contains
mount points for removable devices that have been
mounted manually.

/opt The /opt directory is used to install “optional” software.
This is mainly used to hold commercial software products
that may be installed on your system.

20 Chapter 3

www.it-ebooks.info

http://www.it-ebooks.info/

Table 3-4 (continued)

Directory Comments

/proc The /proc directory is special. It’s not a real filesystem in
the sense of files stored on your hard drive. Rather, it is
a virtual filesystem maintained by the Linux kernel. The
“files” it contains are peepholes into the kernel itself. The
files are readable and will give you a picture of how the
kernel sees your computer.

/root This is the home directory for the root account.

/sbin This directory contains “system” binaries. These are
programs that perform vital system tasks that are
generally reserved for the superuser.

/tmp The /tmp directory is intended for storage of temporary,
transient files created by various programs. Some con-
figurations cause this directory to be emptied each time
the system is rebooted.

/usr The /usr directory tree is likely the largest one on a Linux
system. It contains all the programs and support files
used by regular users.

/usr/bin /usr/bin contains the executable programs installed
by your Linux distribution. It is not uncommon for this
directory to hold thousands of programs.

/usr/lib The shared libraries for the programs in /usr/bin.

/usr/local The /usr/local tree is where programs that are not
included with your distribution but are intended for
system-wide use are installed. Programs compiled from
source code are normally installed in /usr/local/bin.
On a newly installed Linux system, this tree exists, but it
will be empty until the system administrator puts some-
thing in it.

/usr/sbin Contains more system administration programs.

/usr/share /usr/share contains all the shared data used by
programs in /usr/bin. This includes things like default
configuration files, icons, screen backgrounds, sound
files, etc.

/usr/share/doc Most packages installed on the system will include some
kind of documentation. In /usr/share/doc, we will find
documentation files organized by package.

Exploring the System 21

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Table 3-4 (continued)

Directory Comments

/var With the exception of /tmp and /home, the directories
we have looked at so far remain relatively static; that is,
their contents don’t change. The /var directory tree is
where data that is likely to change is stored. Various
databases, spool files, user mail, etc. are located here.

/var/log /var/log contains log files, records of various system
activity. These are very important and should be mon-
itored from time to time. The most useful one is /var/
log/messages. Note that for security reasons on some
systems, you must be the superuser to view log files.

Symbolic Links
As we look around, we are likely to see a directory listing with an entry
like this:

lrwxrwxrwx 1 root root 11 2012-08-11 07:34 libc.so.6 -> libc-2.6.so

Notice how the first letter of the listing is l and the entry seems to
have two filenames? This is a special kind of a file called a symbolic link (also
known as a soft link or symlink). In most Unix-like systems it is possible to
have a file referenced by multiple names. While the value of this may not
be obvious now, it is really a useful feature.

Picture this scenario: A program requires the use of a shared resource
of some kind contained in a file named foo, but foo has frequent version
changes. It would be good to include the version number in the filename
so the administrator or other interested party could see what version of foo
is installed. This presents a problem. If we change the name of the shared
resource, we have to track down every program that might use it and change
it to look for a new resource name every time a new version of the resource
is installed. That doesn’t sound like fun at all.

Here is where symbolic links save the day. Let’s say we install version 2.6
of foo, which has the filename foo-2.6, and then create a symbolic link simply
called foo that points to foo-2.6. This means that when a program opens the
file foo, it is actually opening the file foo-2.6. Now everybody is happy. The
programs that rely on foo can find it, and we can still see what actual version
is installed. When it is time to upgrade to foo-2.7, we just add the file to our
system, delete the symbolic link foo, and create a new one that points to the
new version. Not only does this solve the problem of the version upgrade,
but it also allows us to keep both versions on our machine. Imagine that
foo-2.7 has a bug (damn those developers!) and we need to revert to the old

22 Chapter 3

www.it-ebooks.info

http://www.it-ebooks.info/

version. Again, we just delete the symbolic link pointing to the new version
and create a new symbolic link pointing to the old version.

The directory listing above (from the /lib directory of a Fedora system)
shows a symbolic link called libc.so.6 that points to a shared library file called
libc-2.6.so. This means that programs looking for libc.so.6 will actually get the
file libc-2.6.so. We will learn how to create symbolic links in the next chapter.

H A R D L I N K S

While we are on the subject of links, we need to mention that there is a second
type of link called a hard link. Hard links also allow files to have multiple names,
but they do it in a different way. We’ll talk more about the differences between
symbolic and hard links in the next chapter.

Exploring the System 23
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

M A N I P U L A T I N G F I L E S A N D
DIRECTORIES

At this point, we are ready for some real work! This
chapter will introduce the following commands:

cp—Copy files and directories.

mv—Move/rename files and directories.

mkdir—Create directories.

rm—Remove files and directories.

ln—Create hard and symbolic links.

These five commands are among the most frequently used Linux com-
mands. They are used for manipulating both files and directories.

Now, to be frank, some of the tasks performed by these commands are
more easily done with a graphical file manager. With a file manager, we can
drag and drop a file from one directory to another, cut and paste files,
delete files, and so on. So why use these old command-line programs?

www.it-ebooks.info

http://www.it-ebooks.info/

The answer is power and flexibility. While it is easy to perform simple
file manipulations with a graphical file manager, complicated tasks can be
easier with the command-line programs. For example, how could we copy
all the HTML files from one directory to another—but only those that do
not exist in the destination directory or are newer than the versions in the
destination directory? Pretty hard with a file manager. Pretty easy with the
command line:

cp -u *.html destination

Wildcards
Before we begin using our commands, we need to talk about the shell fea-
ture that makes these commands so powerful. Because the shell uses file-
names so much, it provides special characters to help you rapidly specify
groups of filenames. These special characters are called wildcards. Using
wildcards (also known as globbing) allows you to select filenames based on
patterns of characters. Table 4-1 lists the wildcards and what they select.

Table 4-1: Wildcards

Wildcard Matches

* Any characters

? Any single character

[characters] Any character that is a member of the set characters

[!characters] Any character that is not a member of the set characters

[[:class:]] Any character that is a member of the specified class

Table 4-2 lists the most commonly used character classes.

Table 4-2: Commonly Used Character Classes

Character Class Matches

[:alnum:] Any alphanumeric character

[:alpha:] Any alphabetic character

[:digit:] Any numeral

[:lower:] Any lowercase letter

[:upper:] Any uppercase letter

26 Chapter 4

www.it-ebooks.info

http://www.it-ebooks.info/

Using wildcards makes it possible to construct very sophisticated selec-
tion criteria for filenames. Table 4-3 lists some examples of patterns and
what they match.

Table 4-3: Wildcard Examples

Pattern Matches

* All files

g* Any file beginning with g

b*.txt Any file beginning with b followed by any
characters and ending with .txt

Data??? Any file beginning with Data followed by
exactly three characters

[abc]* Any file beginning with either a, b, or c

BACKUP.[0-9][0-9][0-9] Any file beginning with BACKUP. followed by
exactly three numerals

[[:upper:]]* Any file beginning with an uppercase letter

[![:digit:]]* Any file not beginning with a numeral

*[[:lower:]123] Any file ending with a lowercase letter or the
numerals 1, 2, or 3

Wildcards can be used with any command that accepts filenames as
arguments, but we’ll talk more about that in Chapter 7.

C H A R A C T E R R A N G E S

If you are coming from another Unix-like environment or have been reading
some other books on this subject, you may have encountered the [A-Z] or the
[a-z] character range notations. These are traditional Unix notations and
worked in older versions of Linux as well. They can still work, but you have to
be very careful with them because they will not produce the expected results
unless properly configured. For now, you should avoid using them and use
character classes instead.

Manipulating Files and Directories 27
www.it-ebooks.info

http://www.it-ebooks.info/

W I L D C A R D S W O R K I N T H E G U I T O O

Wildcards are especially valuable, not only because they are used so frequently
on the command line but also because they are supported by some graphical
file managers.

In Nautilus (the file manager for GNOME), you can select files using
Edit Select Pattern. Just enter a file selection pattern with wildcards, and
the files in the currently viewed directory will be highlighted for selection.

In some versions of Dolphin and Konqueror (the file managers for KDE),
you can enter wildcards directly on the location bar. For example, if you
want to see all the files starting with a lowercase u in the /usr/bin directory,
enter /usr/bin/u* in the location bar, and it will display the result.

Many ideas originally found in the command line interface make their way
into the graphical interface, too. It is one of the many things that make the
Linux desktop so powerful.

mkdir—Create Directories
The mkdir command is used to create directories. It works like this:

mkdir directory...

A note on notation: In this book, when three periods follow an argument
in the description of a command (as above), it means that the argument can
be repeated; thus, in this case,

mkdir dir1

would create a single directory named dir1, while

mkdir dir1 dir2 dir3

would create three directories named dir1, dir2, and dir3.

cp—Copy Files and Directories
The cp command copies files or directories. It can be used two differ-
ent ways:

cp item1 item2

to copy the single file or directory item1 to file or directory item2 and:

cp item... directory

to copy multiple items (either files or directories) into a directory.

28 Chapter 4

www.it-ebooks.info

http://www.it-ebooks.info/

Tables 4-4 and 4-5 list some of the commonly used options (the short
option and the equivalent long option) for cp.

Table 4-4: cp Options

Option Meaning

-a, --archive Copy the files and directories and all of their attributes,
including ownerships and permissions. Normally,
copies take on the default attributes of the user per-
forming the copy.

-i, --interactive Before overwriting an existing file, prompt the user for
confirmation. IIf this option is not specified, cp will
silently overwrite files.

-r, --recursive Recursively copy directories and their contents. This
option (or the -a option) is required when copying
directories.

-u, --update When copying files from one directory to another, copy
only files that either don’t exist or are newer than the
existing corresponding files in the destination directory.

-v, --verbose Display informative messages as the copy is performed.

Table 4-5: cp Examples

Command Results

cp file1 file2 Copy file1 to file2. IIf file2 exists, it is overwritten
with the contents of file1. If file2 does not exist, it
is created.

cp -i file1 file2 Same as above, except that if file2 exists, the user is
prompted before it is overwritten.

cp file1 file2 dir1 Copy file1 and file2 into directory dir1. dir1 must
already exist.

cp dir1/* dir2 Using a wildcard, all the files in dir1 are copied into
dir2. dir2 must already exist.

cp -r dir1 dir2 Copy directory dir1 (and its contents) to directory
dir2. If directory dir2 does not exist, it is created and
will contain the same contents as directory dir1.

Manipulating Files and Directories 29
www.it-ebooks.info

http://www.it-ebooks.info/

mv—Move and Rename Files
The mv command performs both file moving and file renaming, depending
on how it is used. In either case, the original filename no longer exists after
the operation. mv is used in much the same way as cp:

mv item1 item2

to move or rename file or directory item1 to item2 or

mv item... directory

to move one or more items from one directory to another.
mv shares many of the same options as cp, as shown in Tables 4-6 and 4-7.

Table 4-6: mv Options

Option Meaning

-i, --interactive Before overwriting an existing file, prompt the user for
confirmation. IIf this option is not specified, mv will
silently overwrite files.

-u, --update When moving files from one directory to another, move
only files that either don’t exist in the destination
directory or are newer than the existing corresponding
files in the destination directory.

-v, --verbose Display informative messages as the move is
performed.

Table 4-7: mv Examples

Command Results

mv file1 file2 Move file1 to file2. IIf file2 exists, it is overwritten
with the contents of file1. If file2 does not exist, it is
created. IIn either case, file1 ceases to exist.

mv -i file1 file2 Same as above, except that if file2 exists, the user is
prompted before it is overwritten.

mv file1 file2 dir1 Move file1 and file2 into directory dir1. dir1 must
already exist.

mv dir1 dir2 Move directory dir1 (and its contents) into directory
dir2. If directory dir2 does not exist, create directory
dir2, move the contents of directory dir1 into dir2, and
delete directory dir1.

30 Chapter 4

www.it-ebooks.info

http://www.it-ebooks.info/

rm—Remove Files and Directories
The rm command is used to remove (delete) files and directories, like this:

rm item...

where item is the name of one or more files or directories.

B E C A R E F U L W I T H R M !

Unix-like operating systems such as Linux do not have an undelete command.
Once you delete something with rm, it’s gone. Linux assumes you’re smart and
you know what you’re doing.

Be particularly careful with wildcards. Consider this classic example. Let’s
say you want to delete just the HTML files in a directory. To do this, you type:

rm *.html

which is correct, but if you accidentally place a space between the * and the
.html like so:

rm * .html

the rm command will delete all the files in the directory and then complain that
there is no file called .html.

Here is a useful tip: Whenever you use wildcards with rm (besides carefully
checking your typing!), test the wildcard first with ls. This will let you see the
files that will be deleted. Then press the up arrow key to recall the command
and replace the ls with rm.

Tables 4-8 and 4-9 list some of the common options for rm.

Table 4-8: rm Options

Option Meaning

-i, --interactive Before deleting an existing file, prompt the user for
confirmation. IIf this option is not specified, rm will
silently delete files.

-r, --recursive Recursively delete directories. This means that if a
directory being deleted has subdirectories, delete
them too. To delete a directory, this option must be
specified.

-f, --force Ignore nonexistent files and do not prompt. This
overrides the --interactive option.

-v, --verbose Display informative messages as the deletion is
performed.

Manipulating Files and Directories 31
www.it-ebooks.info

http://www.it-ebooks.info/

Table 4-9: rm Examples

Command Results

rm file1 Delete file1 silently.

rm -i file1 Before deleting file1, prompt the user for
confirmation.

rm -r file1 dir1 Delete file1 and dir1 and its contents.

rm -rf file1 dir1 Same as above, except that if either file1 or dir1
does not exist, rm will continue silently.

ln—Create Links
The ln command is used to create either hard or symbolic links. It is used in
one of two ways:

ln file link

to create a hard link and

ln -s item link

to create a symbolic link where item is either a file or a directory.

Hard Links
Hard links are the original Unix way of creating links; symbolic links are
more modern. By default, every file has a single hard link that gives the file
its name. When we create a hard link, we create an additional directory
entry for a file. Hard links have two important limitations:

A hard link cannot reference a file outside its own filesystem. This
means a link cannot reference a file that is not on the same disk parti-
tion as the link itself.

A hard link cannot reference a directory.

A hard link is indistinguishable from the file itself. Unlike a directory
list containing a symbolic link, a directory list containing a hard link shows
no special indication of the link. When a hard link is deleted, the link is
removed, but the contents of the file itself continue to exist (that is, its space
is not deallocated) until all links to the file are deleted.

It is important to be aware of hard links because you might encounter
them from time to time, but modern practice prefers symbolic links, which
we will cover next.

Symbolic Links
Symbolic links were created to overcome the limitations of hard links. Sym-
bolic links work by creating a special type of file that contains a text pointer

32 Chapter 4

www.it-ebooks.info

http://www.it-ebooks.info/

to the referenced file or directory. In this regard they operate in much the
same way as a Windows shortcut, though of course they predate the Win-
dows feature by many years. ;-)

A file pointed to by a symbolic link and the symbolic link itself are
largely indistinguishable from one another. For example, if you write some-
thing to the symbolic link, the referenced file is also written to. However,
when you delete a symbolic link, only the link is deleted, not the file itself.
If the file is deleted before the symbolic link, the link will continue to exist
but will point to nothing. In this case, the link is said to be broken. In many
implementations, the ls command will display broken links in a distinguish-
ing color, such as red, to reveal their presence.

The concept of links can seem confusing, but hang in there. We’re
going to try all this stuff and it will, hopefully, become clear.

Let’s Build a Playground
Since we are going to do some real file manipulation, let’s build a safe place
to “play” with our file manipulation commands. First we need a directory to
work in. We’ll create one in our home directory and call it playground.

Creating Directories
The mkdir command is used to create a directory. To create our playground
directory, we will first make sure we are in our home directory and then cre-
ate the new directory:

[me@linuxbox ~]$ cd
[me@linuxbox ~]$ mkdir playground

To make playground a little more interesting, let’s create a couple of dir-
ectories inside it called dir1 and dir2. To do this, we will change our current
working directory to playground and execute another mkdir:

[me@linuxbox ~]$ cd playground
[me@linuxbox playground]$ mkdir dir1 dir2

Notice that the mkdir command will accept multiple arguments, allowing
us to create both directories with a single command.

Copying Files
Next, let’s get some data into our playground. We’ll do this by copying a
file. Using the cp command, we’ll copy the passwd file from the /etc directory
to the current working directory.

[me@linuxbox playground]$ cp /etc/passwd .

Manipulating Files and Directories 33
www.it-ebooks.info

http://www.it-ebooks.info/

Notice how we used the shorthand for the current working directory,
the single trailing period. So now if we perform an ls, we will see our file:

[me@linuxbox playground]$ ls -l
total 12
drwxrwxr-x 2 me me 4096 2012-01-10 16:40 dir1
drwxrwxr-x 2 me me 4096 2012-01-10 16:40 dir2
-rw-r--r-- 1 me me 1650 2012-01-10 16:07 passwd

Now, just for fun, let’s repeat the copy using the -v option (verbose) to
see what it does:

[me@linuxbox playground]$ cp -v /etc/passwd .
`/etc/passwd' -> `./passwd'

The cp command performed the copy again, but this time it displayed
a concise message indicating what operation it was performing. Notice that
cp overwrote the first copy without any warning. Again, this is a case of cp
assuming that you know what you’re doing. To get a warning, we’ll include
the -i (interactive) option:

[me@linuxbox playground]$ cp -i /etc/passwd .
cp: overwrite `./passwd'?

Responding to the prompt by entering a y will cause the file to be over-
written; any other character (for example, n) will cause cp to leave the file
alone.

Moving and Renaming Files
Now, the name passwd doesn’t seem very playful and this is a playground, so
let’s change it to something else:

[me@linuxbox playground]$ mv passwd fun

Let’s pass the fun around a little by moving our renamed file to each of
the directories and back again:

[me@linuxbox playground]$ mv fun dir1

moves it first to directory dir1. Then

[me@linuxbox playground]$ mv dir1/fun dir2

moves it from dir1 to dir2. Then

[me@linuxbox playground]$ mv dir2/fun .

34 Chapter 4

www.it-ebooks.info

http://www.it-ebooks.info/

finally brings it back to the current working directory. Next, let’s see the
effect of mv on directories. First we will move our data file into dir1 again:

[me@linuxbox playground]$ mv fun dir1

and then move dir1 into dir2 and confirm it with ls:

[me@linuxbox playground]$ mv dir1 dir2
[me@linuxbox playground]$ ls -l dir2
total 4
drwxrwxr-x 2 me me 4096 2012-01-11 06:06 dir1
[me@linuxbox playground]$ ls -l dir2/dir1
total 4
-rw-r--r-- 1 me me 1650 2012-01-10 16:33 fun

Note that because dir2 already existed, mv moved dir1 into dir2. If
dir2 had not existed, mv would have renamed dir1 to dir2. Lastly, let’s put
everything back:

[me@linuxbox playground]$ mv dir2/dir1 .
[me@linuxbox playground]$ mv dir1/fun .

Creating Hard Links
Now we’ll try some links. First the hard links: We’ll create some links to our
data file like so:

[me@linuxbox playground]$ ln fun fun-hard
[me@linuxbox playground]$ ln fun dir1/fun-hard
[me@linuxbox playground]$ ln fun dir2/fun-hard

So now we have four instances of the file fun. Let’s take a look at our
playground directory:

[me@linuxbox playground]$ ls -l
total 16
drwxrwxr-x 2 me me 4096 2012-01-14 16:17 dir1
drwxrwxr-x 2 me me 4096 2012-01-14 16:17 dir2
-rw-r--r-- 4 me me 1650 2012-01-10 16:33 fun
-rw-r--r-- 4 me me 1650 2012-01-10 16:33 fun-hard

One thing you notice is that the second field in the listing for fun and
fun-hard both contain a 4, which is the number of hard links that now exist
for the file. You’ll remember that a file will always have at least one link
because the file’s name is created by a link. So, how do we know that fun
and fun-hard are, in fact, the same file? In this case, ls is not very helpful.
While we can see that fun and fun-hard are both the same size (field 5), our
listing provides no way to be sure they are the same file. To solve this prob-
lem, we’re going to have to dig a little deeper.

Manipulating Files and Directories 35
www.it-ebooks.info

http://www.it-ebooks.info/

When thinking about hard links, it is helpful to imagine that files are
made up of two parts: the data part containing the file’s contents and the
name part, which holds the file’s name. When we create hard links, we are
actually creating additional name parts that all refer to the same data part.
The system assigns a chain of disk blocks to what is called an inode, which is
then associated with the name part. Each hard link therefore refers to a spe-
cific inode containing the file’s contents.

The ls command has a way to reveal this information. It is invoked with
the -i option:

[me@linuxbox playground]$ ls -li
total 16
12353539 drwxrwxr-x 2 me me 4096 2012-01-14 16:17 dir1
12353540 drwxrwxr-x 2 me me 4096 2012-01-14 16:17 dir2
12353538 -rw-r--r-- 4 me me 1650 2012-01-10 16:33 fun
12353538 -rw-r--r-- 4 me me 1650 2012-01-10 16:33 fun-hard

In this version of the listing, the first field is the inode number, and as
we can see, both fun and fun-hard share the same inode number, which con-
firms they are the same file.

Creating Symbolic Links
Symbolic links were created to overcome the two disadvantages of hard
links: Hard links cannot span physical devices, and hard links cannot refer-
ence directories, only files. Symbolic links are a special type of file that con-
tains a text pointer to the target file or directory.

Creating symbolic links is similar to creating hard links:

[me@linuxbox playground]$ ln -s fun fun-sym
[me@linuxbox playground]$ ln -s ../fun dir1/fun-sym
[me@linuxbox playground]$ ln -s ../fun dir2/fun-sym

The first example is pretty straightforward: We simply add the -s option
to create a symbolic link rather than a hard link. But what about the next
two? Remember, when we create a symbolic link, we are creating a text
description of where the target file is relative to the symbolic link. It’s eas-
ier to see if we look at the ls output:

[me@linuxbox playground]$ ls -l dir1
total 4
-rw-r--r-- 4 me me 1650 2012-01-10 16:33 fun-hard
lrwxrwxrwx 1 me me 6 2012-01-15 15:17 fun-sym -> ../fun

The listing for fun-sym in dir1 shows that it is a symbolic link by the lead-
ing l in the first field and the fact that it points to ../fun, which is correct.
Relative to the location of fun-sym, fun is in the directory above it. Notice
too, that the length of the symbolic link file is 6, the number of characters
in the string ../fun rather than the length of the file to which it is pointing.

36 Chapter 4

www.it-ebooks.info

http://www.it-ebooks.info/

When creating symbolic links, you can use either absolute pathnames,
like this:

[me@linuxbox playground]$ ln -s /home/me/playground/fun dir1/fun-sym

or relative pathnames, as we did in our earlier example. Using relative path-
names is more desirable because it allows a directory containing symbolic
links to be renamed and/or moved without breaking the links.

In addition to regular files, symbolic links can also reference directories:

[me@linuxbox playground]$ ln -s dir1 dir1-sym
[me@linuxbox playground]$ ls -l
total 16
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir1
lrwxrwxrwx 1 me me 4 2012-01-16 14:45 dir1-sym -> dir1
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir2
-rw-r--r-- 4 me me 1650 2012-01-10 16:33 fun
-rw-r--r-- 4 me me 1650 2012-01-10 16:33 fun-hard
lrwxrwxrwx 1 me me 3 2012-01-15 15:15 fun-sym -> fun

Removing Files and Directories
As we covered earlier, the rm command is used to delete files and directories.
We are going to use it to clean up our playground a little bit. First, let’s
delete one of our hard links:

[me@linuxbox playground]$ rm fun-hard
[me@linuxbox playground]$ ls -l
total 12
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir1
lrwxrwxrwx 1 me me 4 2012-01-16 14:45 dir1-sym -> dir1
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir2
-rw-r--r-- 3 me me 1650 2012-01-10 16:33 fun
lrwxrwxrwx 1 me me 3 2012-01-15 15:15 fun-sym -> fun

That worked as expected. The file fun-hard is gone and the link count
shown for fun is reduced from four to three, as indicated in the second
field of the directory listing. Next, we’ll delete the file fun, and just for
enjoyment, we’ll include the -i option to show what that does:

[me@linuxbox playground]$ rm -i fun
rm: remove regular file `fun'?

Enter y at the prompt, and the file is deleted. But let’s look at the out-
put of ls now. Notice what happened to fun-sym? Since it’s a symbolic link
pointing to a now nonexistent file, the link is broken:

[me@linuxbox playground]$ ls -l
total 8
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir1
lrwxrwxrwx 1 me me 4 2012-01-16 14:45 dir1-sym -> dir1
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir2
lrwxrwxrwx 1 me me 3 2012-01-15 15:15 fun-sym -> fun

Manipulating Files and Directories 37
www.it-ebooks.info

http://www.it-ebooks.info/

Most Linux distributions configure ls to display broken links. On a
Fedora box, broken links are displayed in blinking red text! The presence of
a broken link is not in and of itself dangerous, but it is rather messy. If we
try to use a broken link, we will see this:

[me@linuxbox playground]$ less fun-sym
fun-sym: No such file or directory

Let’s clean up a little. We’ll delete the symbolic links:

[me@linuxbox playground]$ rm fun-sym dir1-sym
[me@linuxbox playground]$ ls -l
total 8
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir1
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir2

One thing to remember about symbolic links is that most file opera-
tions are carried out on the link’s target, not the link itself. However, rm is
an exception. When you delete a link, it is the link that is deleted, not the
target.

Finally, we will remove our playground. To do this, we will return to our
home directory and use rm with the recursive option (-r) to delete play-
ground and all of its contents, including its subdirectories:

[me@linuxbox playground]$ cd
[me@linuxbox ~]$ rm -r playground

C R E A T I N G S Y M L I N K S W I T H T H E G U I

The file managers in both GNOME and KDE provide an easy and automatic
method of creating symbolic links. With GNOME, holding the CTRL and SHIFT
keys while dragging a file will create a link rather than copying (or moving)
the file. In KDE, a small menu appears whenever a file is dropped, offering a
choice of copying, moving, or linking the file.

Final Note
We’ve covered a lot of ground here, and the information may take a while
to fully sink in. Perform the playground exercise over and over until it makes
sense. It is important to get a good understanding of basic file manipulation
commands and wildcards. Feel free to expand on the playground exercise
by adding more files and directories, using wildcards to specify files for vari-
ous operations. The concept of links may be a little confusing at first, but
take the time to learn how they work. They can be a real lifesaver.

38 Chapter 4

www.it-ebooks.info

http://www.it-ebooks.info/

W O R K I N G W I T H C O M M A N D S

Up to this point, we have seen a series of mysterious
commands, each with its own mysterious options and
arguments. In this chapter, we will attempt to remove
some of that mystery and even create some of our
own commands. The commands introduced in this
chapter are these:

type—Indicate how a command name is interpreted.

which—Display which executable program will be executed.

man—Display a command’s manual page.

apropos—Display a list of appropriate commands.

info—Display a command’s info entry.

whatis—Display a very brief description of a command.

alias—Create an alias for a command.

www.it-ebooks.info

http://www.it-ebooks.info/

What Exactly Are Commands?
A command can be one of four things:

An executable program like all those files we saw in /usr/bin. Within this
category, programs can be compiled binaries, such as programs written in
C and C++, or programs written in scripting languages, such as the shell,
Perl, Python, Ruby, and so on.

A command built into the shell itself. bash supports a number of com-
mands internally called shell builtins. The cd command, for example, is a
shell builtin.

A shell function. Shell functions are miniature shell scripts incorporated
into the environment. We will cover configuring the environment and
writing shell functions in later chapters, but for now just be aware that
they exist.

An alias. An alias is a command that we can define ourselves, built from
other commands.

Identifying Commands
It is often useful to know exactly which of the four kinds of commands is
being used, and Linux provides a couple of ways to find out.

type—Display a Command’s Type
The type command is a shell builtin that displays the kind of command the
shell will execute, given a particular command name. It works like this:

type command

where command is the name of the command you want to examine. Here are
some examples:

[me@linuxbox ~]$ type type
type is a shell builtin
[me@linuxbox ~]$ type ls
ls is aliased to `ls --color=tty'
[me@linuxbox ~]$ type cp
cp is /bin/cp

Here we see the results for three different commands. Notice that the ls
command (taken from a Fedora system) is actually an alias for the ls com-
mand with the --color=tty option added. Now we know why the output from
ls is displayed in color!

40 Chapter 5

www.it-ebooks.info

http://www.it-ebooks.info/

which—Display an Executable’s Location
Sometimes more than one version of an executable program is installed on
a system. While this is not very common on desktop systems, it’s not unusual
on large servers. To determine the exact location of a given executable, the
which command is used:

[me@linuxbox ~]$ which ls
/bin/ls

which works only for executable programs, not builtins or aliases that
are substitutes for actual executable programs. When we try to use which
on a shell builtin (for example, cd), we get either no response or an error
message:

[me@linuxbox ~]$ which cd
/usr/bin/which: no cd in (/opt/jre1.6.0_03/bin:/usr/lib/qt-3.3/bin:/usr/kerber
os/bin:/opt/jre1.6.0_03/bin:/usr/lib/ccache:/usr/local/bin:/usr/bin:/bin:/home
/me/bin)

This is a fancy way of saying “command not found.”

Getting a Command’s Documentation
With this knowledge of what a command is, we can now search for the docu-
mentation available for each kind of command.

help—Get Help for Shell Builtins
bash has a built-in help facility for each of the shell builtins. To use it, type
help followed by the name of the shell builtin. For example:

[me@linuxbox ~]$ help cd
cd: cd [-L|-P] [dir]
Change the current directory to DIR. The variable $HOME is the default DIR.
The variable CDPATH defines the search path for the directory containing DIR.
Alternative directory names in CDPATH are separated by a colon (:). A null
directory name is the same as the current directory, i.e. `.'. If DIR begins
with a slash (/), then CDPATH is not used. If the directory is not found, and
the shell option `cdable_vars' is set, then try the word as a variable name.
If that variable has a value, then cd to the value of that variable. The -P
option says to use the physical directory structure instead of following
symbolic links; the -L option forces symbolic links to be followed.

A note on notation: When square brackets appear in the description of
a command’s syntax, they indicate optional items. A vertical bar character
indicates mutually exclusive items. An example is the cd command above:
cd [-L|-P] [dir].

This notation says that the command cd may be followed optionally
by either a -L or a -P and further, optionally followed by the argument dir.

Working with Commands 41
www.it-ebooks.info

http://www.it-ebooks.info/

While the output of help for the cd command is concise and accurate, it
is by no means a tutorial, and as we can see, it also seems to mention a lot of
things we haven’t talked about yet! Don’t worry. We’ll get there.

--help—Display Usage Information
Many executable programs support a --help option that displays a descrip-
tion of the command’s supported syntax and options. For example:

[me@linuxbox ~]$ mkdir --help
Usage: mkdir [OPTION] DIRECTORY...
Create the DIRECTORY(ies), if they do not already exist.

 -Z, --context=CONTEXT (SELinux) set security context to CONTEXT
Mandatory arguments to long options are mandatory for short options too.
 -m, --mode=MODE set file mode (as in chmod), not a=rwx – umask
 -p, --parents no error if existing, make parent directories as
 needed
 -v, --verbose print a message for each created directory
 --help display this help and exit
 --version output version information and exit
Report bugs to <bug-coreutils@gnu.org>.

Some programs don’t support the --help option, but try it anyway. Often
it results in an error message that will reveal the same usage information.

man—Display a Program’s Manual Page
Most executable programs intended for command-line use provide a formal
piece of documentation called a manual or man page. A special paging pro-
gram called man is used to view them, like this:

man program

where program is the name of the command to view.
Man pages vary somewhat in format but generally contain a title, a syn-

opsis of the command’s syntax, a description of the command’s purpose,
and a listing and description of each of the command’s options. Man pages,
however, do not usually include examples, and they are intended as a refer-
ence, not a tutorial. As an example, let’s try viewing the man page for the ls
command:

[me@linuxbox ~]$ man ls

On most Linux systems, man uses less to display the manual page, so all
of the familiar less commands work while displaying the page.

The “manual” that man displays is broken into sections and covers not
only user commands but also system administration commands, program-
ming interfaces, file formats, and more. Table 5-1 describes the layout of
the manual.

42 Chapter 5

www.it-ebooks.info

http://www.it-ebooks.info/

Table 5-1: Man Page Organization

Section Contents

1 User commands

2 Programming interfaces for kernel system calls

3 Programming interfaces to the C library

4 Special files such as device nodes and drivers

5 File formats

6 Games and amusements such as screensavers

7 Miscellaneous

8 System administration commands

Sometimes we need to look in a specific section of the manual to find
what we are looking for. This is particularly true if we are looking for a file
format that is also the name of a command. If we don’t specify a section num-
ber, we will always get the first instance of a match, probably in section 1. To
specify a section number, we use man like this:

man section search_term

For example:

[me@linuxbox ~]$ man 5 passwd

will display the man page describing the file format of the /etc/passwd file.

apropos—Display Appropriate Commands
It is also possible to search the list of man pages for possible matches based
on a search term. Though crude, this approach is sometimes helpful. Here
is an example of a search for man pages using the search term floppy:

[me@linuxbox ~]$ apropos floppy
create_floppy_devices (8) - udev callout to create all possible
 floppy device based on the CMOS type
fdformat (8) - Low-level formats a floppy disk
floppy (8) - format floppy disks
gfloppy (1) - a simple floppy formatter for the GNOME
mbadblocks (1) - tests a floppy disk, and marks the bad
 blocks in the FAT
mformat (1) - add an MSDOS filesystem to a low-level
 formatted floppy disk

The first field in each line of output is the name of the man page, and
the second field shows the section. Note that the man command with the -k
option performs exactly the same function as apropos.

Working with Commands 43
www.it-ebooks.info

http://www.it-ebooks.info/

whatis—Display a Very Brief Description of a Command
The whatis program displays the name and a one-line description of a man
page matching a specified keyword:

[me@linuxbox ~]$ whatis ls
ls (1) - list directory contents

T H E M O S T B R U T A L M A N P A G E O F T H E M A L L

As we have seen, the manual pages supplied with Linux and other Unix-like sys-
tems are intended as reference documentation and not as tutorials. Many man
pages are hard to read, but I think that the grand prize for difficulty has to go
to the man page for bash. As I was doing my research for this book, I gave it a
careful review to ensure that I was covering most of its topics. When printed,
it’s over 80 pages long and extremely dense, and its structure makes absolutely
no sense to a new user.

On the other hand, it is very accurate and concise, as well as being
extremely complete. So check it out if you dare, and look forward to the day
when you can read it and it all makes sense.

info—Display a Program’s Info Entry
The GNU Project provides an alternative to man pages called info pages. Info
pages are displayed with a reader program named, appropriately enough,
info. Info pages are hyperlinked much like web pages. Here is a sample:

File: coreutils.info, Node: ls invocation, Next: dir invocation, Up:
Directory listing

10.1 `ls': List directory contents
==================================

The `ls' program lists information about files (of any type, including
directories). Options and file arguments can be intermixed arbitrarily, as
usual.

 For non-option command-line arguments that are directories, by default `ls'
lists the contents of directories, not recursively, and omitting files with
names beginning with `.'. For other non-option arguments, by default `ls'
lists just the filename. If no non-option argument is specified, `ls' operates
on the current directory, acting as if it had been invoked with a single
argument of `.'.

 By default, the output is sorted alphabetically, according to the
--zz-Info: (coreutils.info.gz)ls invocation, 63 lines --Top----------

44 Chapter 5

www.it-ebooks.info

http://www.it-ebooks.info/

The info program reads info files, which are tree-structured into indi-
vidual nodes, each containing a single topic. Info files contain hyperlinks
that can move you from node to node. A hyperlink can be identified by its
leading asterisk and is activated by placing the cursor upon it and pressing
the ENTER key.

To invoke info, enter info followed optionally by the name of a pro-
gram. Table 5-2 lists commands used to control the reader while displaying
an info page.

Table 5-2: info Commands

Command Action

? Display command help.

PAGE UP or BACKSPACE Display previous page.

PAGE DOWN or Spacebar Display next page.

n Next—Display the next node.

p Previous—Display the previous node.

u Up—Display the parent node of the currently
displayed node, usually a menu.

ENTER Follow the hyperlink at the cursor location.

q Quit.

Most of the command-line programs we have discussed so far are part
of the GNU Project’s coreutils package, so you can find more information
about them by typing

[me@linuxbox ~]$ info coreutils

which will display a menu page containing hyperlinks to documentation for
each program provided by the coreutils package.

README and Other Program Documentation Files
Many software packages installed on your system have documentation files
residing in the /usr/share/doc directory. Most of these are stored in plaintext
format and can be viewed with less. Some of the files are in HTML format
and can be viewed with a web browser. We may encounter some files ending
with a .gz extension. This indicates that they have been compressed with the
gzip compression program. The gzip package includes a special version of
less called zless, which will display the contents of gzip-compressed text
files.

Working with Commands 45
www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your Own Commands with alias
Now for our very first experience with programming! We will create a com-
mand of our own using the alias command. But before we start, we need to
reveal a small command-line trick. It’s possible to put more than one com-
mand on a line by separating each command with a semicolon character. It
works like this:

command1; command2; command3...

Here’s the example we will use:

[me@linuxbox ~]$ cd /usr; ls; cd -
bin games kerberos lib64 local share tmp
etc include lib libexec sbin src
/home/me
[me@linuxbox ~]$

As we can see, we have combined three commands on one line. First we
change directory to /usr, then we list the directory, and finally we return to
the original directory (by using cd -) so we end up where we started. Now
let’s turn this sequence into a new command using alias. The first thing we
have to do is dream up a name for our new command. Let’s try test. Before
we do that, it would be a good idea to find out if the name test is already
being used. To find out, we can use the type command again:

[me@linuxbox ~]$ type test
test is a shell builtin

Oops! The name test is already taken. Let’s try foo:

[me@linuxbox ~]$ type foo
bash: type: foo: not found

Great! foo is not taken. So let’s create our alias:

[me@linuxbox ~]$ alias foo='cd /usr; ls; cd -'

Notice the structure of this command:

alias name='string'

After the command alias we give the alias a name followed immediately
(no whitespace allowed) by an equal sign, which is followed immediately by a
quoted string containing the meaning to be assigned to the name. After we
define our alias, it can be used anywhere the shell would expect a command.

46 Chapter 5

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s try it:

[me@linuxbox ~]$ foo
bin games kerberos lib64 local share tmp
etc include lib libexec sbin src
/home/me
[me@linuxbox ~]$

We can also use the type command again to see our alias:

[me@linuxbox ~]$ type foo
foo is aliased to `cd /usr; ls ; cd -'

To remove an alias, the unalias command is used, like so:

[me@linuxbox ~]$ unalias foo
[me@linuxbox ~]$ type foo
bash: type: foo: not found

While we purposely avoided naming our alias with an existing com-
mand name, it is sometimes desirable to do so. This is often done to apply a
commonly desired option to each invocation of a common command. For
instance, we saw earlier how the ls command is often aliased to add color
support:

[me@linuxbox ~]$ type ls
ls is aliased to `ls --color=tty'

To see all the aliases defined in the environment, use the alias com-
mand without arguments. Here are some of the aliases defined by default
on a Fedora system. Try to figure out what they all do:

[me@linuxbox ~]$ alias
alias l.='ls -d .* --color=tty'
alias ll='ls -l --color=tty'
alias ls='ls --color=tty'

There is one tiny problem with defining aliases on the command line.
They vanish when your shell session ends. In a later chapter we will see how
to add our own aliases to the files that establish the environment each time
we log on, but for now, enjoy the fact that we have taken our first, albeit
tiny, step into the world of shell programming!

Revisiting Old Friends
Now that we have learned how to find the documentation for commands, go
and look up the documentation for all the commands we have encountered
so far. Study what additional options are available and try them out!

Working with Commands 47
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

R E D I R E C T I O N

In this lesson we are going to unleash what may be
the coolest feature of the command line: I/O redirec-
tion. The I/O stands for input/output, and with this
facility you can redirect the input and output of
commands to and from files, as well as connect multiple commands to
make powerful command pipelines. To show off this facility, we will intro-
duce the following commands:

cat—Concatenate files.

sort—Sort lines of text.

uniq—Report or omit repeated lines.

wc—Print newline, word, and byte counts for each file.

grep—Print lines matching a pattern.

head—Output the first part of a file.

tail—Output the last part of a file.

tee—Read from standard input and write to standard output and files.

www.it-ebooks.info

http://www.it-ebooks.info/

Standard Input, Output, and Error
Many of the programs that we have used so far produce output of some
kind. This output often consists of two types. First, we have the program’s
results; that is, the data the program is designed to produce. Second, we
have status and error messages that tell us how the program is getting along.
If we look at a command like ls, we can see that it displays its results and its
error messages on the screen.

Keeping with the Unix theme of “everything is a file,” programs such
as ls actually send their results to a special file called standard output (often
expressed as stdout) and their status messages to another file called standard
error (stderr). By default, both standard output and standard error are linked
to the screen and not saved into a disk file.

In addition, many programs take input from a facility called standard
input (stdin), which is, by default, attached to the keyboard.

I/O redirection allows us to change where output goes and where input
comes from. Normally, output goes to the screen and input comes from the
keyboard, but with I/O redirection we can change that.

Redirecting Standard Output
I/O redirection allows us to redefine where standard output goes. To
redirect standard output to another file instead of the screen, we use the >
redirection operator followed by the name of the file. Why would we want
to do this? It’s often useful to store the output of a command in a file. For
example, we could tell the shell to send the output of the ls command to
the file ls-output.txt instead of the screen:

[me@linuxbox ~]$ ls -l /usr/bin > ls-output.txt

Here, we created a long listing of the /usr/bin directory and sent the
results to the file ls-output.txt. Let’s examine the redirected output of the
command:

[me@linuxbox ~]$ ls -l ls-output.txt
-rw-rw-r-- 1 me me 167878 2012-02-01 15:07 ls-output.txt

Good—a nice, large, text file. If we look at the file with less, we will
see that the file ls-output.txt does indeed contain the results from our ls
command:

[me@linuxbox ~]$ less ls-output.txt

Now, let’s repeat our redirection test but this time with a twist. We’ll
change the name of the directory to one that does not exist:

[me@linuxbox ~]$ ls -l /bin/usr > ls-output.txt
ls: cannot access /bin/usr: No such file or directory

50 Chapter 6

www.it-ebooks.info

http://www.it-ebooks.info/

We received an error message. This makes sense because we specified
the nonexistent directory /bin/usr, but why was the error message displayed
on the screen rather than being redirected to the file ls-output.txt ? The answer
is that the ls program does not send its error messages to standard output.
Instead, like most well-written Unix programs, it sends its error messages to
standard error. Since we redirected only standard output and not standard
error, the error message was still sent to the screen. We’ll see how to redirect
standard error in just a minute, but first, let’s look at what happened to our
output file:

[me@linuxbox ~]$ ls -l ls-output.txt
-rw-rw-r-- 1 me me 0 2012-02-01 15:08 ls-output.txt

The file now has zero length! This is because, when we redirect output
with the > redirection operator, the destination file is always rewritten from
the beginning. Since our ls command generated no results and only an
error message, the redirection operation started to rewrite the file and then
stopped because of the error, resulting in its truncation. In fact, if we ever
need to actually truncate a file (or create a new, empty file) we can use a
trick like this:

[me@linuxbox ~]$ > ls-output.txt

Simply using the redirection operator with no command preceding it
will truncate an existing file or create a new, empty file.

So, how can we append redirected output to a file instead of overwriting
the file from the beginning? For that, we use the >> redirection operator,
like so:

[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt

Using the >> operator will result in the output being appended to the
file. If the file does not already exist, it is created just as though the > oper-
ator had been used. Let’s put it to the test:

[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
[me@linuxbox ~]$ ls -l ls-output.txt
-rw-rw-r-- 1 me me 503634 2012-02-01 15:45 ls-output.txt

We repeated the command three times, resulting in an output file three
times as large.

Redirecting Standard Error
edirecting standard error lacks the ease of using a dedicated redirection
operator. To redirect standard error we must refer to its file descriptor. A pro-
gram can produce output on any of several numbered file streams. While

Redirection 51
www.it-ebooks.info

http://www.it-ebooks.info/

we have referred to the first three of these file streams as standard input,
output, and error, the shell references them internally as file descriptors
0, 1, and 2, respectively. The shell provides a notation for redirecting files
using the file descriptor number. Since standard error is the same as file
descriptor 2, we can redirect standard error with this notation:

[me@linuxbox ~]$ ls -l /bin/usr 2> ls-error.txt

The file descriptor 2 is placed immediately before the redirection oper-
ator to perform the redirection of standard error to the file ls-error.txt.

Redirecting Standard Output and Standard Error to One File
There are cases in which we may wish to capture all of the output of a com-
mand to a single file. To do this, we must redirect both standard output and
standard error at the same time. There are two ways to do this. First, here is
the traditional way, which works with old versions of the shell:

[me@linuxbox ~]$ ls -l /bin/usr > ls-output.txt 2>&1

Using this method, we perform two redirections. First we redirect
standard output to the file ls-output.txt, and then we redirect file descriptor
2 (standard error) to file descriptor 1 (standard output) using the nota-
tion 2>&1.

Note: Notice that the order of the redirections is significant. The redirection of standard error
must always occur after redirecting standard output or it doesn’t work. In the example
above, > ls-output.txt 2>&1 redirects standard error to the file ls-output.txt, but if
the order is changed to 2>&1 > ls-output.txt, standard error is directed to the screen.

Recent versions of bash provide a second, more streamlined method for
performing this combined redirection:

[me@linuxbox ~]$ ls -l /bin/usr &> ls-output.txt

In this example, we use the single notation &> to redirect both standard
output and standard error to the file ls-output.txt.

Disposing of Unwanted Output
Sometimes silence really is golden, and we don’t want output from a com-
mand—we just want to throw it away. This applies particularly to error and
status messages. The system provides a way to do this by redirecting output
to a special file called /dev/null. This file is a system device called a bit bucket,
which accepts input and does nothing with it. To suppress error messages
from a command, we do this:

[me@linuxbox ~]$ ls -l /bin/usr 2> /dev/null

52 Chapter 6

www.it-ebooks.info

http://www.it-ebooks.info/

/ D E V / N U L L I N U N I X C U L T U R E

The bit bucket is an ancient Unix concept, and due to its universality it has
appeared in many parts of Unix culture. So when someone says he is send-
ing your comments to “dev null,” now you know what it means. For more
examples, see the Wikipedia article at http://en.wikipedia.org/wiki/Dev/null.

Redirecting Standard Input
Up to now, we haven’t encountered any commands that make use of stand-
ard input (actually we have, but we’ll reveal that surprise a little bit later), so
we need to introduce one.

cat—Concatenate Files
The cat command reads one or more files and copies them to standard out-
put like so:

cat [file...]

In most cases, you can think of cat as being analogous to the TYPE com-
mand in DOS. You can use it to display files without paging. For example,

[me@linuxbox ~]$ cat ls-output.txt

will display the contents of the file ls-output.txt. cat is often used to display
short text files. Since cat can accept more than one file as an argument, it can
also be used to join files together. Say we have downloaded a large file that
has been split into multiple parts (multimedia files are often split this way on
Usenet), and we want to join them back together. If the files were named

movie.mpeg.001 movie.mpeg.002 ... movie.mpeg.099

we could rejoin them with this command:

[me@linuxbox ~]$ cat movie.mpeg.0* > movie.mpeg

Since wildcards always expand in sorted order, the arguments will be
arranged in the correct order.

This is all well and good, but what does this have to do with standard
input? Nothing yet, but let’s try something else. What happens if we enter
cat with no arguments?

[me@linuxbox ~]$ cat

Nothing happens—it just sits there like it’s hung. It may seem that way,
but it’s really doing exactly what it’s supposed to.

If cat is not given any arguments, it reads from standard input, and
since standard input is, by default, attached to the keyboard, it’s waiting
for us to type something!

Redirection 53
www.it-ebooks.info

http://www.it-ebooks.info/

Try this:

[me@linuxbox ~]$ cat
The quick brown fox jumped over the lazy dog.

Next, type CTRL-D (i.e., hold down the CTRL key and press D) to tell cat
that it has reached end-of-file (EOF) on standard input:

[me@linuxbox ~]$ cat
The quick brown fox jumped over the lazy dog.
The quick brown fox jumped over the lazy dog.

In the absence of filename arguments, cat copies standard input to
standard output, so we see our line of text repeated. We can use this beha-
vior to create short text files. Let’s say that we wanted to create a file called
lazy_dog.txt containing the text in our example. We would do this:

[me@linuxbox ~]$ cat > lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Enter the command followed by the text we want to place in the file.
Remember to type CTRL-D at the end. Using the command line, we have
implemented the world’s dumbest word processor! To see our results, we
can use cat to copy the file to standard output again:

[me@linuxbox ~]$ cat lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Now that we know how cat accepts standard input in addition to file-
name arguments, let’s try redirecting standard input:

[me@linuxbox ~]$ cat < lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Using the < redirection operator, we change the source of standard
input from the keyboard to the file lazy_dog.txt. We see that the result is the
same as passing a single filename argument. This is not particularly useful
compared to passing a filename argument, but it serves to demonstrate
using a file as a source of standard input. Other commands make better
use of standard input, as we shall soon see.

Before we move on, check out the man page for cat, as it has several
interesting options.

Pipelines
The ability of commands to read data from standard input and send to
standard output is utilized by a shell feature called pipelines. Using the pipe
operator | (vertical bar), the standard output of one command can be piped
into the standard input of another.

command1 | command2

54 Chapter 6

www.it-ebooks.info

http://www.it-ebooks.info/

To fully demonstrate this, we are going to need some commands.
Remember how we said there was one we already knew that accepts stand-
ard input? It’s less. We can use less to display, page by page, the output of
any command that sends its results to standard output:

[me@linuxbox ~]$ ls -l /usr/bin | less

This is extremely handy! Using this technique, we can conveniently
examine the output of any command that produces standard output.

Filters
Pipelines are often used to perform complex operations on data. It is pos-
sible to put several commands together into a pipeline. Frequently, the com-
mands used this way are referred to as filters. Filters take input, change it
somehow, and then output it. The first one we will try is sort. Imagine we
want to make a combined list of all of the executable programs in /bin and
/usr/bin, put them in sorted order, and then view the list:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | less

Since we specified two directories (/bin and /usr/bin), the output of ls
would have consisted of two sorted lists, one for each directory. By including
sort in our pipeline, we changed the data to produce a single, sorted list.

uniq—Report or Omit Repeated Lines
The uniq command is often used in conjunction with sort. uniq accepts a
sorted list of data from either standard input or a single filename argument
(see the uniq man page for details) and, by default, removes any duplicates
from the list. So, to make sure our list has no duplicates (that is, any pro-
grams of the same name that appear in both the /bin and /usr/bin director-
ies) we will add uniq to our pipeline:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq | less

In this example, we use uniq to remove any duplicates from the output
of the sort command. If we want to see the list of duplicates instead, we add
the -d option to uniq like so:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq -d | less

wc—Print Line, Word, and Byte Counts
The wc (word count) command is used to display the number of lines,
words, and bytes contained in files. For example:

[me@linuxbox ~]$ wc ls-output.txt
 7902 64566 503634 ls-output.txt

Redirection 55
www.it-ebooks.info

http://www.it-ebooks.info/

In this case it prints out three numbers: lines, words, and bytes con-
tained in ls-output.txt. Like our previous commands, if executed without
command-line arguments, wc accepts standard input. The -l option limits
its output to only report lines. Adding it to a pipeline is a handy way to
count things. To see the number of items we have in our sorted list, we
can do this:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq | wc -l
2728

grep—Print Lines Matching a Pattern
grep is a powerful program used to find text patterns within files, like this:

grep pattern [file...]

When grep encounters a “pattern” in the file, it prints out the lines con-
taining it. The patterns that grep can match can be very complex, but for
now we will concentrate on simple text matches. We’ll cover the advanced
patterns, called regular expressions, in Chapter 19.

Let’s say we want to find all the files in our list of programs that have the
word zip in the name. Such a search might give us an idea of which programs
on our system have something to do with file compression. We would do this:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq | grep zip
bunzip2
bzip2
gunzip
gzip
unzip
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit

There are a couple of handy options for grep: -i, which causes grep to
ignore case when performing the search (normally searches are case sensit-
ive) and -v, which tells grep to print only lines that do not match the pattern.

head/tail—Print First/Last Part of Files
Sometimes you don’t want all the output from a command. You may want
only the first few lines or the last few lines. The head command prints the
first 10 lines of a file, and the tail command prints the last 10 lines. By
default, both commands print 10 lines of text, but this can be adjusted
with the -n option:

[me@linuxbox ~]$ head -n 5 ls-output.txt
total 343496
-rwxr-xr-x 1 root root 31316 2011-12-05 08:58 [

56 Chapter 6

www.it-ebooks.info

http://www.it-ebooks.info/

-rwxr-xr-x 1 root root 8240 2011-12-09 13:39 411toppm
-rwxr-xr-x 1 root root 111276 2011-11-26 14:27 a2p
-rwxr-xr-x 1 root root 25368 2010-10-06 20:16 a52dec
[me@linuxbox ~]$ tail -n 5 ls-output.txt
-rwxr-xr-x 1 root root 5234 2011-06-27 10:56 znew
-rwxr-xr-x 1 root root 691 2009-09-10 04:21 zonetab2pot.py
-rw-r--r-- 1 root root 930 2011-11-01 12:23 zonetab2pot.pyc
-rw-r--r-- 1 root root 930 2011-11-01 12:23 zonetab2pot.pyo
lrwxrwxrwx 1 root root 6 2012-01-31 05:22 zsoelim -> soelim

These can be used in pipelines as well:

[me@linuxbox ~]$ ls /usr/bin | tail -n 5
znew
zonetab2pot.py
zonetab2pot.pyc
zonetab2pot.pyo
zsoelim

tail has an option that allows you to view files in real time. This is use-
ful for watching the progress of log files as they are being written. In the
following example, we will look at the messages file in /var/log. Superuser
privileges are required to do this on some Linux distributions, because the
/var/log/messages file may contain security information.

[me@linuxbox ~]$ tail -f /var/log/messages
Feb 8 13:40:05 twin4 dhclient: DHCPACK from 192.168.1.1
Feb 8 13:40:05 twin4 dhclient: bound to 192.168.1.4 -- renewal in 1652
seconds.
Feb 8 13:55:32 twin4 mountd[3953]: /var/NFSv4/musicbox exported to both
192.168.1.0/24 and twin7.localdomain in 192.168.1.0/24,twin7.localdomain
Feb 8 14:07:37 twin4 dhclient: DHCPREQUEST on eth0 to 192.168.1.1 port 67
Feb 8 14:07:37 twin4 dhclient: DHCPACK from 192.168.1.1
Feb 8 14:07:37 twin4 dhclient: bound to 192.168.1.4 -- renewal in 1771
seconds.
Feb 8 14:09:56 twin4 smartd[3468]: Device: /dev/hda, SMART Prefailure
Attribute: 8 Seek_Time_Performance changed from 237 to 236
Feb 8 14:10:37 twin4 mountd[3953]: /var/NFSv4/musicbox exported to both
192.168.1.0/24 and twin7.localdomain in 192.168.1.0/24,twin7.localdomain
Feb 8 14:25:07 twin4 sshd(pam_unix)[29234]: session opened for user me by
(uid=0)
Feb 8 14:25:36 twin4 su(pam_unix)[29279]: session opened for user root by
me(uid=500)

Using the -f option, tail continues to monitor the file and when new
lines are appended, they immediately appear on the display. This continues
until you type CTRL-C.

tee—Read from Stdin and Output to Stdout and Files
In keeping with our plumbing analogy, Linux provides a command called
tee which creates a “T” fitting on our pipe. The tee program reads standard
input and copies it to both standard output (allowing the data to continue
down the pipeline) and to one or more files. This is useful for capturing a
pipeline’s contents at an intermediate stage of processing. Here we repeat

Redirection 57
www.it-ebooks.info

http://www.it-ebooks.info/

one of our earlier examples, this time including tee to capture the entire
directory listing to the file ls.txt before grep filters the pipeline’s contents:

[me@linuxbox ~]$ ls /usr/bin | tee ls.txt | grep zip
bunzip2
bzip2
gunzip
gzip
unzip
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit

Final Note
As always, check out the documentation of each of the commands we have
covered in this chapter. We have seen only their most basic usage, and they
all have a number of interesting options. As we gain Linux experience, we
will see that the redirection feature of the command line is extremely useful
for solving specialized problems. Many commands make use of standard
input and output, and almost all command-line programs use standard
error to display their informative messages.

L I N U X I S A B O U T I M A G I N A T I O N
When I am asked to explain the difference between Windows and Linux, I
often use a toy analogy.

Windows is like a Game Boy. You go to the store and buy one all shiny new
in the box. You take it home, turn it on, and play with it. Pretty graphics, cute
sounds. After a while, though, you get tired of the game that came with it, so
you go back to the store and buy another one. This cycle repeats over and over.
Finally, you go back to the store and say to the person behind the counter, “I
want a game that does this!” only to be told that no such game exists because
there is no “market demand” for it. Then you say, “But I only need to change
this one thing!” The person behind the counter says you can’t change it. The
games are all sealed up in their cartridges. You discover that your toy is limited
to the games that others have decided that you need and no more.

Linux, on the other hand, is like the world’s largest Erector Set. You open
it up, and it’s just a huge collection of parts—a lot of steel struts, screws, nuts,
gears, pulleys, and motors and a few suggestions on what to build. So you start
to play with it. You build one of the suggestions and then another. After a while
you discover that you have your own ideas of what to make. You don’t ever have
to go back to the store, because you already have everything you need. The
Erector Set takes on the shape of your imagination. It does what you want.

Your choice of toys is, of course, a personal thing, so which toy would you
find more satisfying?

58 Chapter 6

www.it-ebooks.info

http://www.it-ebooks.info/

SEEING THE WORLD AS
THE SHELL SEES IT

In this chapter we are going to look at some of the
“magic” that occurs on the command line when you
press the ENTER key. While we will examine several
interesting and complex features of the shell, we will
do it with just one new command:

echo—Display a line of text.

Expansion
Each time you type a command line and press the ENTER key, bash performs
several processes upon the text before it carries out your command. We’ve
seen a couple of cases of how a simple character sequence, for example *,
can have a lot of meaning to the shell. The process that makes this happen
is called expansion. With expansion, you enter something, and it is expanded
into something else before the shell acts upon it. To demonstrate what we

www.it-ebooks.info

http://www.it-ebooks.info/

mean by this, let’s take a look at the echo command. echo is a shell builtin
that performs a very simple task: It prints out its text arguments on standard
output.

[me@linuxbox ~]$ echo this is a test
this is a test

That’s pretty straightforward. Any argument passed to echo gets dis-
played. Let’s try another example:

[me@linuxbox ~]$ echo *
Desktop Documents ls-output.txt Music Pictures Public Templates Videos

So what just happened? Why didn’t echo print *? As you recall from our
work with wildcards, the * character means “match any characters in a file-
name,” but what we didn’t see in our original discussion was how the shell
does that. The simple answer is that the shell expands the * into something
else (in this instance, the names of the files in the current working direct-
ory) before the echo command is executed. When the ENTER key is pressed,
the shell automatically expands any qualifying characters on the command
line before the command is carried out, so the echo command never saw
the *, only its expanded result. Knowing this, we can see that echo behaved
as expected.

Pathname Expansion
The mechanism by which wildcards work is called pathname expansion. If
we try some of the techniques that we employed in our earlier chapters, we
will see that they are really expansions. Given a home directory that looks
like this:

[me@linuxbox ~]$ ls
Desktop ls-output.txt Pictures Templates
Documents Music Public Videos

we could carry out the following expansions:

[me@linuxbox ~]$ echo D*
Desktop Documents

and

[me@linuxbox ~]$ echo *s
Documents Pictures Templates Videos

or even

[me@linuxbox ~]$ echo [[:upper:]]*
Desktop Documents Music Pictures Public Templates Videos

60 Chapter 7

www.it-ebooks.info

http://www.it-ebooks.info/

And looking beyond our home directory:

[me@linuxbox ~]$ echo /usr/*/share
/usr/kerberos/share /usr/local/share

P A T H N A M E E X P A N S I O N O F H I D D E N F I L E S

As we know, filenames that begin with a period character are hidden. Path-
name expansion also respects this behavior. An expansion such as

echo *

does not reveal hidden files.
It might appear at first glance that we could include hidden files in an

expansion by starting the pattern with a leading period, like this:

echo .*

It almost works. However, if we examine the results closely, we will see that
the names . and .. will also appear in the results. Since these names refer to the
current working directory and its parent directory, using this pattern will likely
produce an incorrect result. We can see this if we try the command

ls -d .* | less

To correctly perform pathname expansion in this situation, we have to
employ a more specific pattern. This will work correctly:

ls -d .[!.]?*

This pattern expands into every filename that begins with a period, does
not include a second period, contains at least one additional character, and
may be followed by any other characters.

Tilde Expansion
As you may recall from our introduction to the cd command, the tilde char-
acter (~) has a special meaning. When used at the beginning of a word, it
expands into the name of the home directory of the named user or, if no
user is named, the home directory of the current user:

[me@linuxbox ~]$ echo ~
/home/me

If user foo has an account, then

[me@linuxbox ~]$ echo ~foo
/home/foo

Seeing the World as the Shell Sees It 61
www.it-ebooks.info

http://www.it-ebooks.info/

Arithmetic Expansion
The shell allows arithmetic to be performed by expansion. This allows us to
use the shell prompt as a calculator:

[me@linuxbox ~]$ echo $((2 + 2))
4

Arithmetic expansion uses the following form:

$((expression))

where expression is an arithmetic expression consisting of values and arith-
metic operators.

Arithmetic expansion supports only integers (whole numbers, no deci-
mals) but can perform quite a number of different operations. Table 7-1
lists a few of the supported operators.

Table 7-1: Arithmetic Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division (But remember, because expansion supports only integer
arithmetic, results are integers.)

% Modulo, which simply means remainder

** Exponentiation

Spaces are not significant in arithmetic expressions, and expressions
may be nested. For example, multiply 52 by 3:

[me@linuxbox ~]$ echo $(($((5**2)) * 3))
75

Single parentheses may be used to group multiple subexpressions. With
this technique, we can rewrite the example above and get the same result
using a single expansion instead of two:

[me@linuxbox ~]$ echo $(((5**2) * 3))
75

Here is an example using the division and remainder operators. Notice
the effect of integer division:

[me@linuxbox ~]$ echo Five divided by two equals $((5/2))
Five divided by two equals 2

62 Chapter 7

www.it-ebooks.info

http://www.it-ebooks.info/

[me@linuxbox ~]$ echo with $((5%2)) left over.
with 1 left over.

Arithmetic expansion is covered in greater detail in Chapter 34.

Brace Expansion
Perhaps the strangest expansion is called brace expansion. With it, you can
create multiple text strings from a pattern containing braces. Here’s an
example:

[me@linuxbox ~]$ echo Front-{A,B,C}-Back
Front-A-Back Front-B-Back Front-C-Back

Patterns to be brace expanded may contain a leading portion called a
preamble and a trailing portion called a postscript. The brace expression itself
may contain either a comma-separated list of strings or a range of integers
or single characters. The pattern may not contain embedded whitespace.
Here is an example using a range of integers:

[me@linuxbox ~]$ echo Number_{1..5}
Number_1 Number_2 Number_3 Number_4 Number_5

Here we get a range of letters in reverse order:

[me@linuxbox ~]$ echo {Z..A}
Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

Brace expansions may be nested:

[me@linuxbox ~]$ echo a{A{1,2},B{3,4}}b
aA1b aA2b aB3b aB4b

So what is this good for? The most common application is to make lists
of files or directories to be created. For example, if we were photographers
and had a large collection of images that we wanted to organize by years and
months, the first thing we might do is create a series of directories named in
numeric year-month format. This way, the directory names will sort in chrono-
logical order. We could type out a complete list of directories, but that’s a lot
of work and it’s error prone too. Instead, we could do this:

[me@linuxbox ~]$ mkdir Pics
[me@linuxbox ~]$ cd Pics
[me@linuxbox Pics]$ mkdir {2009..2011}-0{1..9} {2009..2011}-{10..12}
[me@linuxbox Pics]$ ls
2009-01 2009-07 2010-01 2010-07 2011-01 2011-07
2009-02 2009-08 2010-02 2010-08 2011-02 2011-08
2009-03 2009-09 2010-03 2010-09 2011-03 2011-09
2009-04 2009-10 2010-04 2010-10 2011-04 2011-10
2009-05 2009-11 2010-05 2010-11 2011-05 2011-11
2009-06 2009-12 2010-06 2010-12 2011-06 2011-12

Pretty slick!

Seeing the World as the Shell Sees It 63
www.it-ebooks.info

http://www.it-ebooks.info/

Parameter Expansion
We’re only going to touch briefly on parameter expansion in this chapter,
but we’ll be covering it extensively later. It’s a feature that is more useful in
shell scripts than directly on the command line. Many of its capabilities have
to do with the system’s ability to store small chunks of data and to give each
chunk a name. Many such chunks, more properly called variables, are avail-
able for your examination. For example, the variable named USER contains
your username. To invoke parameter expansion and reveal the contents of
USER, you would do this:

[me@linuxbox ~]$ echo $USER
me

To see a list of available variables, try this:

[me@linuxbox ~]$ printenv | less

You may have noticed that with other types of expansion, if you mis-
type a pattern, the expansion will not take place and the echo command will
simply display the mistyped pattern. With parameter expansion, if you mis-
spell the name of a variable, the expansion will still take place but will result
in an empty string:

[me@linuxbox ~]$ echo $SUER

[me@linuxbox ~]$

Command Substitution
Command substitution allows us to use the output of a command as an
expansion:

[me@linuxbox ~]$ echo $(ls)
Desktop Documents ls-output.txt Music Pictures Public Templates Videos

One of my favorites goes something like this:

[me@linuxbox ~]$ ls -l $(which cp)
-rwxr-xr-x 1 root root 71516 2012-12-05 08:58 /bin/cp

Here we passed the results of which cp as an argument to the ls com-
mand, thereby getting the listing of the cp program without having to know
its full pathname. We are not limited to just simple commands. Entire
pipelines can be used (only partial output shown):

[me@linuxbox ~]$ file $(ls /usr/bin/* | grep zip)
/usr/bin/bunzip2: symbolic link to `bzip2'
/usr/bin/bzip2: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV
), dynamically linked (uses shared libs), for GNU/Linux 2.6.9, stripped
/usr/bin/bzip2recover: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.9, stripped
/usr/bin/funzip: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV

64 Chapter 7

www.it-ebooks.info

http://www.it-ebooks.info/

), dynamically linked (uses shared libs), for GNU/Linux 2.6.9, stripped
/usr/bin/gpg-zip: Bourne shell script text executable
/usr/bin/gunzip: symbolic link to `../../bin/gunzip'
/usr/bin/gzip: symbolic link to `../../bin/gzip'
/usr/bin/mzip: symbolic link to `mtools'

In this example, the results of the pipeline became the argument list of
the file command.

There is an alternative syntax for command substitution in older shell
programs that is also supported in bash. It uses back quotes instead of the dol-
lar sign and parentheses:

[me@linuxbox ~]$ ls -l `which cp`
-rwxr-xr-x 1 root root 71516 2012-12-05 08:58 /bin/cp

Quoting
Now that we’ve seen how many ways the shell can perform expansions, it’s
time to learn how we can control it. For example, take this:

[me@linuxbox ~]$ echo this is a test
this is a test

Or this:

[me@linuxbox ~]$ echo The total is $100.00
The total is 00.00

In the first example, word splitting by the shell removed extra whitespace
from the echo command’s list of arguments. In the second example, para-
meter expansion substituted an empty string for the value of $1 because it
was an undefined variable. The shell provides a mechanism called quoting
to selectively suppress unwanted expansions.

Double Quotes
The first type of quoting we will look at is double quotes. If you place text
inside double quotes, all the special characters used by the shell lose their
special meaning and are treated as ordinary characters. The exceptions are
$ (dollar sign), \ (backslash), and ` (back tick). This means that word split-
ting, pathname expansion, tilde expansion, and brace expansion are sup-
pressed, but parameter expansion, arithmetic expansion, and command
substitution are still carried out. Using double quotes, we can cope with file-
names containing embedded spaces. Say we were the unfortunate victim of
a file called two words.txt. If we tried to use this on the command line, word
splitting would cause this to be treated as two separate arguments rather
than the desired single argument:

[me@linuxbox ~]$ ls -l two words.txt
ls: cannot access two: No such file or directory
ls: cannot access words.txt: No such file or directory

Seeing the World as the Shell Sees It 65
www.it-ebooks.info

http://www.it-ebooks.info/

By using double quotes, we stop the word splitting and get the desired
result; further, we can even repair the damage:

[me@linuxbox ~]$ ls -l "two words.txt"
-rw-rw-r-- 1 me me 18 2012-02-20 13:03 two words.txt
[me@linuxbox ~]$ mv "two words.txt" two_words.txt

There! Now we don’t have to keep typing those pesky double quotes.
Remember: Parameter expansion, arithmetic expansion, and command

substitution still take place within double quotes:

[me@linuxbox ~]$ echo "$USER $((2+2)) $(cal)"
me 4 February 2012
Su Mo Tu We Th Fr Sa
 1 2 3 4
 5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29

We should take a moment to look at the effect of double quotes on
command substitution. First let’s look a little deeper at how word splitting
works. In our earlier example, we saw how word splitting appears to remove
extra spaces in our text:

[me@linuxbox ~]$ echo this is a test
this is a test

By default, word splitting looks for the presence of spaces, tabs, and
newlines (linefeed characters) and treats them as delimiters between words.
This means that unquoted spaces, tabs, and newlines are not considered
to be part of the text. They serve only as separators. Since they separate the
words into different arguments, our example command line contains a com-
mand followed by four distinct arguments. If we add double quotes, how-
ever, word splitting is suppressed and the embedded spaces are not treated
as delimiters; rather, they become part of the argument:

[me@linuxbox ~]$ echo "this is a test"
this is a test

Once the double quotes are added, our command line contains a com-
mand followed by a single argument.

The fact that newlines are considered delimiters by the word splitting
mechanism causes an interesting, albeit subtle, effect on command substitu-
tion. Consider the following:

[me@linuxbox ~]$ echo $(cal)
February 2012 Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29
[me@linuxbox ~]$ echo "$(cal)"

66 Chapter 7

www.it-ebooks.info

http://www.it-ebooks.info/

 February 2012
Su Mo Tu We Th Fr Sa
 1 2 3 4
 5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29

In the first instance, the unquoted command substitution resulted in
a command line containing 38 arguments; in the second, the result was a
command line with 1 argument that includes the embedded spaces and
newlines.

Single Quotes
If we need to suppress all expansions, we use single quotes. Here is a compar-
ison of unquoted, double quotes, and single quotes:

[me@linuxbox ~]$ echo text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER
text /home/me/ls-output.txt a b foo 4 me
[me@linuxbox ~]$ echo "text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER"
text ~/*.txt {a,b} foo 4 me
[me@linuxbox ~]$ echo 'text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER'
text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER

As we can see, with each succeeding level of quoting, more and more
expansions are suppressed.

Escaping Characters
Sometimes we want to quote only a single character. To do this, we can pre-
cede a character with a backslash, which in this context is called the escape
character. Often this is done inside double quotes to selectively prevent an
expansion.

[me@linuxbox ~]$ echo "The balance for user $USER is: \$5.00"
The balance for user me is: $5.00

It is also common to use escaping to eliminate the special meaning of a
character in a filename. For example, it is possible to use characters in file-
names that normally have special meaning to the shell. These would include
$, !, &, (a space), and others. To include a special character in a filename,
you can do this:

[me@linuxbox ~]$ mv bad\&filename good_filename

To allow a backslash character to appear, escape it by typing \\. Note
that within single quotes, the backslash loses its special meaning and is
treated as an ordinary character.

Seeing the World as the Shell Sees It 67
www.it-ebooks.info

http://www.it-ebooks.info/

B A C K S L A S H E S C A P E S E Q U E N C E S

In addition to its role as the escape character, the backslash is also used as part
of a notation to represent certain special characters called control codes. The first
32 characters in the ASCII coding scheme are used to transmit commands to
teletype-like devices. Some of these codes are familiar (tab, backspace, line-
feed, and carriage return), while others are not (null, end-of-transmission,
and acknowledge), as shown in Table 7-2.

Table 7-2: Backslash Escape Sequences

Escape Sequence Meaning

\a Bell (“alert”—causes the computer to beep)

\b Backspace

\n Newline (on Unix-like systems, this produces a linefeed)

\r Carriage return

\t Tab

This table lists some of the common backslash escape sequences. The idea
behind using the backslash originated in the C programming language and has
been adopted by many others, including the shell.

Adding the -e option to echo will enable interpretation of escape sequences.
You may also place them inside $' '. Here, using the sleep command, a simple
program that just waits for the specified number of seconds and then exits, we
can create a primitive countdown timer.

sleep 10; echo -e "Time's up\a"

We could also do this:

sleep 10; echo "Time's up" $'\a'

Final Note
As we move forward with using the shell, we will find that expansions and
quoting will be used with increasing frequency, so it makes sense to get a
good understanding of the way they work. In fact, it could be argued that
they are the most important subjects to learn about the shell. Without a
proper understanding of expansion, the shell will always be a source of
mystery and confusion, and much of its potential power will be wasted.

68 Chapter 7

www.it-ebooks.info

http://www.it-ebooks.info/

A D V A N C E D K E Y B O A R D
T R I C K S

I often kiddingly describe Unix as “the operating sys-
tem for people who like to type.” Of course, the fact
that it even has a command line is a testament to that.
But command line users don’t like to type that much.
Why else would so many commands have such short
names, like cp, ls, mv, and rm?

In fact, one of the most cherished goals of the command line is laziness—
doing the most work with the fewest keystrokes. Another goal is never hav-
ing to lift your fingers from the keyboard—never reaching for the mouse. In
this chapter, we will look at bash features that make keyboard use faster and
more efficient.

The following commands will make an appearance:

clear—Clear the screen.

history—Display the contents of the history list.

www.it-ebooks.info

http://www.it-ebooks.info/

Command Line Editing
bash uses a library (a shared collection of routines that different programs
can use) called Readline to implement command line editing. We have
already seen some of this. We know, for example, that the arrow keys move
the cursor, but there are many more features. Think of these as additional
tools that we can employ in our work. It’s not important to learn all of them,
but many of them are very useful. Pick and choose as desired.

Note: Some of the key sequences below (particularly those that use the ALT key) may be inter-
cepted by the GUI for other functions. All of the key sequences should work properly
when using a virtual console.

Cursor Movement
Table 8-1 lists the keys used to move the cursor.

Table 8-1: Cursor Movement Commands

Key Action

CTRL-A Move cursor to the beginning of the line.

CTRL-E Move cursor to the end of the line.

CTRL-F Move cursor forward one character; same as the right arrow key.

CTRL-B Move cursor backward one character; same as the left arrow key.

ALT-F Move cursor forward one word.

ALT-B Move cursor backward one word.

CTRL-L Clear the screen and move the cursor to the top left corner. The
clear command does the same thing.

Modifying Text
Table 8-2 lists keyboard commands that are used to edit characters on the
command line.

Cutting and Pasting (Killing and Yanking) Text
The Readline documentation uses the terms killing and yanking to refer to
what we would commonly call cutting and pasting. Table 8-3 lists the com-
mands for cutting and pasting. Items that are cut are stored in a buffer
called the kill-ring.

70 Chapter 8

www.it-ebooks.info

http://www.it-ebooks.info/

Table 8-2: Text Editing Commands

Key Action

CTRL-D Delete the character at the cursor location.

CTRL-T Transpose (exchange) the character at the cursor location with
the one preceding it.

ALT-T Transpose the word at the cursor location with the one pre
ceding it.

ALT-L Convert the characters from the cursor location to the end of
the word to lowercase.

ALT-U Convert the characters from the cursor location to the end of
the word to uppercase.

Table 8-3: Cut and Paste Commands

Key Action

CTRL-K Kill text from the cursor location to the end of line.

CTRL-U Kill text from the cursor location to the beginning of the line.

ALT-D Kill text from the cursor location to the end of the current word.

ALT-BACKSPACE Kill text from the cursor location to the beginning of the cur
rent word. If the cursor is at the beginning of a word, kill the
previous word.

CTRL-Y Yank text from the kill-ring and insert it at the cursor location.

T H E M E T A K E Y

If you venture into the Readline documentation, which can be found in the
“READLINE” section of the bash man page, you will encounter the term meta
key. On modern keyboards this maps to the ALT key, but it wasn’t always so.

Back in the dim times (before PCs but after Unix) not everybody had their
own computer. What they might have had was a device called a terminal. A ter-
minal was a communication device that featured a text-display screen and a
keyboard and had just enough electronics inside to display text characters and
move the cursor around. It was attached (usually by serial cable) to a larger
computer or the communication network of a larger computer. There were
many different brands of terminals, and they all had different keyboards and
display feature sets. Since they all tended to at least understand ASCII, software

Advanced Keyboard Tricks 71
www.it-ebooks.info

http://www.it-ebooks.info/

developers wanting portable applications wrote to the lowest common denom-
inator. Unix systems have a very elaborate way of dealing with terminals and
their different display features. Since the developers of Readline could not be
sure of the presence of a dedicated extra control key, they invented one and
called it meta. While the ALT key serves as the meta key on modern keyboards,
you can also press and release the ESC key to get the same effect as holding
down the ALT key if you’re still using a terminal (which you can still do in
Linux!).

Completion
Another way that the shell can help you is through a mechanism called com-
pletion. Completion occurs when you press the TAB key while typing a com-
mand. Let’s see how this works. Say your home directory looks like this:

[me@linuxbox ~]$ ls
Desktop ls-output.txt Pictures Templates Videos
Documents Music Public

Try typing the following but don’t press the ENTER key:

[me@linuxbox ~]$ ls l

Now press the TAB key:

[me@linuxbox ~]$ ls ls-output.txt

See how the shell completed the line for you? Let’s try another one.
Again, don’t press ENTER:

[me@linuxbox ~]$ ls D

Press TAB:

[me@linuxbox ~]$ ls D

No completion—just a beep. This happened because D matches more
than one entry in the directory. For completion to be successful, the “clue”
you give it has to be unambiguous. We can go further:

[me@linuxbox ~]$ ls Do

Then press TAB:

[me@linuxbox ~]$ ls Documents

The completion is successful.

72 Chapter 8

www.it-ebooks.info

http://www.it-ebooks.info/

While this example shows completion of pathnames, which is comple-
tion’s most common use, completion will also work on variables (if the
beginning of the word is a $), usernames (if the word begins with ~), com-
mands (if the word is the first word on the line), and hostnames (if the
beginning of the word is @). Hostname completion works only for host-
names listed in /etc/hosts.

A number of control and meta key sequences are associated with com-
pletion (see Table 8-4).

Table 8-4: Completion Commands

Key Action

ALT-? Display list of possible completions. On most systems you can
also do this by pressing the TAB key a second time, which is
much easier.

ALT-* Insert all possible completions. This is useful when you want to
use more than one possible match.

There quite a few more that I find rather obscure. You can see a list in
the bash man page under the “READLINE” section.

P R O G R A M M A B L E C O M P L E T I O N

Recent versions of bash have a facility called programmable completion. Program-
mable completion allows you (or, more likely, your distribution provider) to
add additional completion rules. Usually this is done to add support for specific
applications. For example, it is possible to add completions for the option list
of a command or match particular file types that an application supports.
Ubuntu has a fairly large set defined by default. Programmable completion is
implemented by shell functions, a kind of mini shell script that we will cover in
later chapters. If you are curious, try

set | less

and see if you can find them. Not all distributions include them by default.

Using History
As we discovered in Chapter 1, bash maintains a history of commands that
have been entered. This list of commands is kept in your home directory
in a file called .bash_history. The history facility is a useful resource for redu-
cing the amount of typing you have to do, especially when combined with
command-line editing.

Advanced Keyboard Tricks 73
www.it-ebooks.info

http://www.it-ebooks.info/

Searching History
At any time, we can view the contents of the history list:

[me@linuxbox ~]$ history | less

By default, bash stores the last 500 commands you have entered. We will
see how to adjust this value in Chapter 11. Let’s say we want to find the com-
mands we used to list /usr/bin. Here is one way we could do this:

[me@linuxbox ~]$ history | grep /usr/bin

And let’s say that among our results we got a line containing an interest-
ing command like this:

 88 ls -l /usr/bin > ls-output.txt

The number 88 is the line number of the command in the history list.
We could use this immediately with another type of expansion called history
expansion. To use our discovered line, we could do this:

[me@linuxbox ~]$!88

bash will expand !88 into the contents of the 88th line in the history list.
We will cover other forms of history expansion a little later.

bash also provides the ability to search the history list incrementally. This
means that we can tell bash to search the history list as we enter characters,
with each additional character further refining our search. To start an incre-
mental search, enter CTRL-R followed by the text you are looking for. When
you find it, you can either press ENTER to execute the command or press
CTRL-J to copy the line from the history list to the current command line.
To find the next occurrence of the text (moving “up” the history list), press
CTRL-R again. To quit searching, press either CTRL-G or CTRL-C. Here we see
it in action:

[me@linuxbox ~]$

First press CTRL-R:

(reverse-i-search)`':

The prompt changes to indicate that we are performing a reverse incre-
mental search. It is “reverse” because we are searching from “now” to some
time in the past. Next, we start typing our search text, which in this example
is /usr/bin:

(reverse-i-search)`/usr/bin': ls -l /usr/bin > ls-output.txt

74 Chapter 8

www.it-ebooks.info

http://www.it-ebooks.info/

Immediately, the search returns its result. Now we can execute
the command by pressing ENTER, or we can copy the command to our
current command line for further editing by pressing CTRL-J. Let’s copy
it. Press CTRL-J:

[me@linuxbox ~]$ ls -l /usr/bin > ls-output.txt

Our shell prompt returns, and our command line is loaded and ready
for action!

Table 8-5 lists some of the keystrokes used to manipulate the history list.

Table 8-5: History Commands

Key Action

CTRL-P Move to the previous history entry. Same action as the up arrow.

CTRL-N Move to the next history entry. Same action as the down arrow.

ALT-< Move to the beginning (top) of the history list.

ALT-> Move to the end (bottom) of the history list; i.e., the current
command line.

CTRL-R Reverse incremental search. Searches incrementally from the
current command line up the history list.

ALT-P Reverse search, non-incremental. With this key, type the search
string and press ENTER before the search is performed.

ALT-N Forward search, non-incremental.

CTRL-O Execute the current item in the history list and advance to the next
one. This is handy if you are trying to re-execute a sequence of
commands in the history list.

History Expansion
The shell offers a specialized type of expansion for items in the history list
by using the ! character. We have already seen how the exclamation point
can be followed by a number to insert an entry from the history list. There
are a number of other expansion features (see Table 8-6).

I would caution against using the !string and !?string forms unless you
are absolutely sure of the contents of the history list items.

Many more elements are available in the history expansion mechanism,
but this subject is already too arcane and our heads may explode if we con-
tinue. The “HISTORY EXPANSION” section of the bash man page goes into
all the gory details. Feel free to explore!

Advanced Keyboard Tricks 75
www.it-ebooks.info

http://www.it-ebooks.info/

Table 8-6: History Expansion Commands

Sequence Action

!! Repeat the last command. It is probably easier to press the up
arrow and ENTER.

!number Repeat history list item number.

!string Repeat last history list item starting with string.

!?string Repeat last history list item containing string.

S C R I P T

In addition to the command history feature in bash, most Linux distributions
include a program called script, which can be used to record an entire shell
session and store it in a file. The basic syntax of the command is

script [file]

where file is the name of the file used for storing the recording. If no file is
specified, the file typescript is used. See the script man page for a complete list
of the program’s options and features.

Final Note
In this chapter we have covered some of the keyboard tricks that the shell
provides to help hardcore typists reduce their workloads. I suspect that as
time goes by and you become more involved with the command line, you
will refer to this chapter to pick up more of these tricks. For now, consider
them optional and potentially helpful.

76 Chapter 8

www.it-ebooks.info

http://www.it-ebooks.info/

P E R M I S S I O N S

Operating systems in the Unix tradition differ from
those in the MS-DOS tradition in that they are not
only multitasking systems but also multiuser systems.

What exactly does this mean? It means that more than one person can
use the computer at the same time. While a typical computer will likely have
only one keyboard and monitor, it can still be used by more than one user.
For example, if a computer is attached to a network or the Internet, remote
users can log in via ssh (secure shell) and operate the computer. In fact,
remote users can execute graphical applications and have the graphical out-
put appear on a remote display. The X Window System supports this as part
of its basic design.

The multiuser capability of Linux is not a recent “innovation” but rather
a feature that is deeply embedded into the design of the operating system.
Considering the environment in which Unix was created, this makes perfect
sense. Years ago, before computers were “personal,” they were large, expens-
ive, and centralized. A typical university computer system, for example, con-
sisted of a large central computer located in one building and terminals
located throughout the campus, each connected to the large central com-
puter. The computer would support many users at the same time.

www.it-ebooks.info

http://www.it-ebooks.info/

In order to make this practical, a method had to be devised to protect
the users from each other. After all, the actions of one user could not be
allowed to crash the computer, nor could one user interfere with the files
belonging to another user.

In this chapter we are going to look at this essential part of system secur-
ity and introduce the following commands:

id—Display user identity.

chmod—Change a file’s mode.

umask—Set the default file permissions.

su—Run a shell as another user.

sudo—Execute a command as another user.

chown—Change a file’s owner.

chgrp—Change a file’s group ownership.

passwd—Change a user’s password.

Owners, Group Members, and Everybody Else
When we were exploring the system back in Chapter 4, we may have
encountered the following problem when trying to examine a file such
as /etc/shadow:

[me@linuxbox ~]$ file /etc/shadow
/etc/shadow: regular file, no read permission
[me@linuxbox ~]$ less /etc/shadow
/etc/shadow: Permission denied

The reason for this error message is that, as regular users, we do not
have permission to read this file.

In the Unix security model, a user may own files and directories. When
a user owns a file or directory, the user has control over its access. Users
can, in turn, belong to a group consisting of one or more users who are given
access to files and directories by their owners. In addition to granting access
to a group, an owner may also grant some set of access rights to everybody,
which in Unix terms is referred to as the world. To find out information
about your identity, use the id command:

[me@linuxbox ~]$ id
uid=500(me) gid=500(me) groups=500(me)

Let’s look at the output. When user accounts are created, users are
assigned a number called a user ID, or uid. This is then, for the sake of the
humans, mapped to a username. The user is assigned a primary group ID, or
gid, and may belong to additional groups. The previous example is from a
Fedora system. On other systems, such as Ubuntu, the output may look a
little different.

78 Chapter 9

www.it-ebooks.info

http://www.it-ebooks.info/

[me@linuxbox ~]$ id
uid=1000(me) gid=1000(me)
groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),44(video),46(
plugdev),108(lpadmin),114(admin),1000(me)

As we can see, the uid and gid numbers are different. This is simply
because Fedora starts its numbering of regular user accounts at 500, while
Ubuntu starts at 1000. We can also see that the Ubuntu user belongs to a lot
more groups. This has to do with the way Ubuntu manages privileges for sys-
tem devices and services.

So where does this information come from? Like so many things in
Linux, it comes from a couple of text files. User accounts are defined in
the /etc/passwd file, and groups are defined in the /etc/group file. When
user accounts and groups are created, these files are modified along with
/etc/shadow, which holds information about the user’s password. For each
user account, the /etc/passwd file defines the user (login) name, the uid,
the gid, the account’s real name, the home directory, and the login shell.
If you examine the contents of /etc/passwd and /etc/group, you will notice
that besides the regular user accounts there are accounts for the superuser
(uid 0) and various other system users.

In Chapter 10, when we cover processes, you will see that some of these
other “users” are, in fact, quite busy.

While many Unix-like systems assign regular users to a common group
such as users, modern Linux practice is to create a unique, single-member
group with the same name as the user. This makes certain types of permis-
sion assignment easier.

Reading, Writing, and Executing
Access rights to files and directories are defined in terms of read access,
write access, and execution access. If we look at the output of the ls com-
mand, we can get some clue as to how this is implemented:

[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-rw-r-- 1 me me 0 2012-03-06 14:52 foo.txt

The first 10 characters of the listing are
the file attributes (see Figure 9-1). The first
of these characters is the file type. Table 9-1
lists the file types you are most likely to see
(there are other, less common types too).

The remaining nine characters of the
file attributes, called the file mode, represent
the read, write, and execute permissions
for the file’s owner, the file’s group owner,
and everybody else.

Permissions 79

Figure 9-1: Breakdown of file
attributes

www.it-ebooks.info

http://www.it-ebooks.info/

When set, the r, w, and x mode attributes have certain effects on files
and directories, as shown in Table 9-2.

Table 9-1: File Types

Attribute File Type

- A regular file.

d A directory.

l A symbolic link. Notice that with symbolic links, the remaining file
attributes are always rwxrwxrwx and are dummy values. The real
file attributes are those of the file the symbolic link points to.

c A character special file. This file type refers to a device that
handles data as a stream of bytes, such as a terminal or modem.

b A block special file. This file type refers to a device that handles
data in blocks, such as a hard drive or CD-ROM drive.

Table 9-2: Permission Attributes

Attribute Files Directories
r Allows a file to be opened and read. Allows a directory’s

contents to be listed if
the execute attribute is
also set.

w Allows a file to be written to or trun-
cated; however, this attribute does not
allow files to be renamed or deleted.
The ability to delete or rename files is
determined by directory attributes.

Allows files within a
directory to be created,
deleted, and renamed if
the execute attribute is
also set.

x Allows a file to be treated as a pro-
gram and executed. Program files writ-
ten in scripting languages must also
be set as readable to be executed.

Allows a directory to
be entered; e.g.,
cd directory.

Table 9-3 shows some examples of file attribute settings.

Table 9-3: Permission Attribute Examples

File Attributes Meaning

-rwx------ A regular file that is readable, writable, and executable by
the file’s owner. No one else has any access.

-rw------- A regular file that is readable and writable by the file’s
owner. No one else has any access.

80 Chapter 9

www.it-ebooks.info

http://www.it-ebooks.info/

Table 9-3 (continued)

File Attributes Meaning

-rw-r--r-- A regular file that is readable and writable by the file’s
owner. Members of the file’s owner group may read the file.
The file is world readable.

-rwxr-xr-x A regular file that is readable, writable, and executable by
the file’s owner. The file may be read and executed by
everybody else.

-rw-rw---- A regular file that is readable and writable by the file’s
owner and members of the file’s owner group only.

Lrwxrwxrwx A symbolic link. All symbolic links have “dummy” permis-
sions. The real permissions are kept with the actual file
pointed to by the symbolic link.

drwxrwx--- A directory. The owner and the members of the owner group
may enter the directory and create, rename, and remove
files within the directory.

drwxr-x--- A directory. The owner may enter the directory and create,
rename, and delete files within the directory. Members of the
owner group may enter the directory but cannot create,
delete, or rename files.

chmod—Change File Mode
To change the mode (permissions) of a file or directory, the chmod com-
mand is used. Be aware that only the file’s owner or the superuser can
change the mode of a file or directory. chmod supports two distinct ways of
specifying mode changes: octal number representation and symbolic repres-
entation. We will cover octal number representation first.

Octal Representation
With octal notation we use octal numbers to set the pattern of desired per-
missions. Since each digit in an octal number represents three binary digits,
this maps nicely to the scheme used to store the file mode. Table 9-4 shows
what we mean.

Table 9-4: File Modes in Binary and Octal

Octal Binary File Mode

0 000 ---

1 001 --x

2 010 -w-

Permissions 81

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Table 9-4 (continued)

Octal Binary File Mode

3 011 -wx

4 100 r--

5 101 r-x

6 110 rw-

7 111 rwx

W H A T T H E H E C K I S O C T A L ?
Octal (base 8) and its cousin hexadecimal (base 16) are number systems often
used to express numbers on computers. We humans, owing to the fact that we
(or at least most of us) were born with 10 fingers, count using a base 10 num-
ber system. Computers, on the other hand, were born with only one finger and
thus do all all their counting in binary (base 2). Their number system has only
two numerals, zero and one. So in binary, counting looks like this: 0, 1, 10, 11,
100, 101, 110, 111, 1000, 1001, 1010, 1011 . . .

In octal, counting is done with the numerals zero through seven, like so:
0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21 . . .

Hexadecimal counting uses the numerals zero through nine plus the let-
ters A through F : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12, 13 . . .

While we can see the sense in binary (since computers have only one fin-
ger), what are octal and hexadecimal good for? The answer has to do with
human convenience. Many times, small portions of data are represented on
computers as bit patterns. Take for example an RGB color. On most computer
displays, each pixel is composed of three color components: 8 bits of red, 8 bits
of green, and 8 bits of blue. A lovely medium blue would be a 24-digit number:
010000110110111111001101.

How would you like to read and write those kinds of numbers all day? I
didn’t think so. Here’s where another number system would help. Each digit in
a hexadecimal number represents four digits in binary. In octal, each digit rep-
resents three binary digits. So our 24-digit medium blue could be condensed to
a 6-digit hexadecimal number: 436FCD. Since the digits in the hexadecimal
number “line up” with the bits in the binary number, we can see that the red
component of our color is 43, the green 6F, and the blue CD.

These days, hexadecimal notation (often called hex) is more common than
octal, but as we shall soon see, octal’s ability to express three bits of binary is
very useful.

By using three octal digits, we can set the file mode for the owner,
group owner, and world.

82 Chapter 9

www.it-ebooks.info

http://www.it-ebooks.info/

[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-rw-r-- 1 me me 0 2012-03-06 14:52 foo.txt
[me@linuxbox ~]$ chmod 600 foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw------- 1 me me 0 2012-03-06 14:52 foo.txt

By passing the argument 600, we were able to set the permissions of
the owner to read and write while removing all permissions from the group
owner and world. Though remembering the octal-to-binary mapping may
seem inconvenient, you will usually have to use only a few common ones:
7 (rwx), 6 (rw-), 5 (r-x), 4 (r--), and 0 (---).

Symbolic Representation
chmod also supports a symbolic notation for specifying file modes. Symbolic
notation is divided into three parts: whom the change will affect, which opera-
tion will be performed, and which permission will be set. To specify who is
affected, a combination of the characters u, g, o, and a is used, as shown in
Table 9-5.

Table 9-5: chmod Symbolic Notation

Symbol Meaning

u Short for user but means the file or directory owner.

g Group owner.

o Short for others but means world.

a Short for all; the combination of u, g, and o.

If no character is specified, all will be assumed. The operation may be
a + indicating that a permission is to be added, a - indicating that a permis-
sion is to be taken away, or a = indicating that only the specified permissions
are to be applied and that all others are to be removed.

Permissions are specified with the r, w, and x characters. Table 9-6 lists
some examples of symbolic notation.

Table 9-6: chmod Symbolic Notation Examples

Notation Meaning

u+x Add execute permission for the owner.

u-x Remove execute permission from the owner.

+x Add execute permission for the owner, group, and world.
Equivalent to a+x.

Permissions 83

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Table 9-6 (continued)

Notation Meaning

o-rw Remove the read and write permissions from anyone besides
the owner and group owner.

go=rw Set the group owner and anyone besides the owner to have
read and write permission. If either the group owner or world
previously had execute permissions, remove them.

u+x,go=rx Add execute permission for the owner and set the permissions
for the group and others to read and execute. Multiple speci-
fications may be separated by commas.

Some people prefer to use octal notation; some folks really like the sym-
bolic. Symbolic notation does offer the advantage of allowing you to set a
single attribute without disturbing any of the others.

Take a look at the chmod man page for more details and a list of options.
A word of caution regarding the --recursive option: It acts on both files and
directories, so it’s not as useful as one would hope because we rarely want
files and directories to have the same permissions.

Setting File Mode with the GUI
Now that we have seen how the permis-
sions on files and directories are set, we can
better understand the permission dialogs
in the GUI. In both Nautilus (GNOME)
and Konqueror (KDE), right-clicking a
file or directory icon will expose a prop-
erties dialog. Figure 9-2 is an example
from KDE 3.5.

Here we can see the settings for the
owner, group, and world. In KDE, click-
ing the Advanced Permissions button
brings up another dialog that allows you
to set each of the mode attributes indi-
vidually. Another victory for understand-
ing brought to us by the command line!

umask—Set Default Permissions
The umask command controls the default
permissions given to a file when it is
created. It uses octal notation to express
a mask of bits to be removed from a file’s
mode attributes.

84 Chapter 9

Figure 9-2: KDE 3.5 File Properties
dialog

www.it-ebooks.info

http://www.it-ebooks.info/

000 000 010 010

- - - rw- r - - r - -

0022 = 2 x 81 + 2 x 80 = 16 + 2 = 18

 1 x 24 + 0 x 23 + 0 x 22 + 1 x 21 + 0 x 20

10010 → 000 000 010 010

 → - - - rw - r - - r - -

$ umask 0022 set the mask to 0022
$ > foo_2.txt create file foo_2.txt
$ ls -l
total 0
-rw-r--r-- 1 p p 0 ago 14 11:23 foo_2.txt

Again, where a 1 appears in the binary value, the corresponding attrib-
ute is unset. Play with some values (try some 7s) to get used to how this
works. When you’re done, remember to clean up:

[me@linuxbox ~]$ rm foo.txt; umask 0002

Most of the time you won’t have to change the mask; the default pro-
vided by your distribution will be fine. In some high-security situations, how-
ever, you will want to control it.

S O M E S P E C I A L P E R M I S S I O N S

Though we usually see an octal permission mask expressed as a three-digit
number, it is more technically correct to express it in four digits. Why?
Because, in addition to read, write, and execute permissions, there are
some other, less-used permission settings.

The first of these is the setuid bit (octal 4000). When applied to an execut-
able file, it sets the effective user ID from that of the real user (the user actually
running the program) to that of the program’s owner. Most often this is given
to a few programs owned by the superuser. When an ordinary user runs a pro-
gram that is setuid root, the program runs with the effective privileges of the
superuser. This allows the program to access files and directories that an
ordinary user would normally be prohibited from accessing. Clearly, because
this raises security concerns, the number of setuid programs must be held to an
absolute minimum.

The second less-used setting is the setgid bit (octal 2000). This, like the setuid
bit, changes the effective group ID from that of the real group ID of the user to that
of the file owner. If the setgid bit is set on a directory, newly created files in the
directory will be given the group ownership of the directory rather the group
ownership of the file’s creator. This is useful in a shared directory when mem-
bers of a common group need access to all the files in the directory, regardless
of the file owner’s primary group.

The third is called the sticky bit (octal 1000). This is a holdover from
ancient Unix, where it was possible to mark an executable file as “not swap-
pable.” On files, Linux ignores the sticky bit, but if applied to a directory, it pre-
vents users from deleting or renaming files unless the user is either the owner
of the directory, the owner of the file, or the superuser. This is often used to
control access to a shared directory, such as /tmp.

Here are some examples of using chmod with symbolic notation to set these
special permissions. First, assign setuid to a program:

chmod u+s program

Next, assign setgid to a directory:

chmod g+s dir

86 Chapter 9

www.it-ebooks.info

http://www.it-ebooks.info/

Finally, assign the sticky bit to a directory:

chmod +t dir

By viewing the output from ls, you can determine the special permissions.
Here are some examples. First, a program that is setuid:

-rwsr-xr-x

Now, a directory that has the setgid attribute:

drwxrwsr-x

Finally, a directory with the sticky bit set:

drwxrwxrwt

Changing Identities
At various times, we may find it necessary to take on the identity of another
user. Often we want to gain superuser privileges to carry out some adminis-
trative task, but it is also possible to “become” another regular user to per-
form such tasks as testing an account. There are three ways to take on an
alternate identity:

Log out and log back in as the alternate user.

Use the su command.

Use the sudo command.

We will skip the first technique because we know how to do it and it
lacks the convenience of the other two. From within your own shell session,
the su command allows you to assume the identity of another user and either
start a new shell session with that user’s ID or issue a single command as that
user. The sudo command allows an administrator to set up a configuration
file called /etc/sudoers and define specific commands that particular users
are permitted to execute under an assumed identity. The choice of which
command to use is largely determined by which Linux distribution you use.
Your distribution probably includes both commands, but its configuration
will favor either one or the other. We’ll start with su.

su—Run a Shell with Substitute User and Group IDs
The su command is used to start a shell as another user. The command syn-
tax looks like this:

su [-[l]] [user]

Permissions 87
www.it-ebooks.info

http://www.it-ebooks.info/

If the -l option is included, the resulting shell session is a login shell for
the specified user. This means that the user’s environment is loaded and the
working directory is changed to the user’s home directory. This is usually
what we want. If the user is not specified, the superuser is assumed. Notice
that (strangely) the -l may be abbreviated as -, which is how it is most often
used. To start a shell for the superuser, we would do this:

[me@linuxbox ~]$ su -
Password:
[root@linuxbox ~]#

After entering the command, we are prompted for the superuser’s pass-
word. If it is successfully entered, a new shell prompt appears indicating that
this shell has superuser privileges (the trailing # rather than a $) and that
the current working directory is now the home directory for the superuser
(normally /root). Once in the new shell, we can carry out commands as the
superuser. When finished, enter exit to return to the previous shell:

[root@linuxbox ~]# exit
[me@linuxbox ~]$

It is also possible to execute a single command rather than starting a
new interactive command by using su this way:

su -c 'command'

Using this form, a single command line is passed to the new shell for
execution. It is important to enclose the command in quotes, as we do not
want expansion to occur in our shell but rather in the new shell:

[me@linuxbox ~]$ su -c 'ls -l /root/*'
Password:
-rw------- 1 root root 754 2011-08-11 03:19 /root/anaconda-ks.cfg

/root/Mail:
total 0
[me@linuxbox ~]$

sudo—Execute a Command as Another User
The sudo command is like su in many ways but has some important addi-
tional capabilities. The administrator can configure sudo to allow an ordin-
ary user to execute commands as a different user (usually the superuser) in
a very controlled way. In particular, a user may be restricted to one or more
specific commands and no others. Another important difference is that the
use of sudo does not require access to the superuser’s password. To authen-
ticate using sudo, the user enters his own password. Let’s say, for example,
that sudo has been configured to allow us to run a fictitious backup program
called backup_script, which requires superuser privileges.

88 Chapter 9

www.it-ebooks.info

http://www.it-ebooks.info/

With sudo it would be done like this:

[me@linuxbox ~]$ sudo backup_script
Password:
System Backup Starting...

After entering the command, we are prompted for our password (not
the superuser’s), and once the authentication is complete, the specified
command is carried out. One important difference between su and sudo is
that sudo does not start a new shell, nor does it load another user’s environ-
ment. This means that commands do not need to be quoted any differently
than they would be without using sudo. Note that this behavior can be over-
ridden by specifying various options. See the sudo man page for details.

To see what privileges are granted by sudo, use the -l option to list them:

[me@linuxbox ~]$ sudo -l
User me may run the following commands on this host:
 (ALL) ALL

U B U N T U A N D S U D O

One of the recurrent problems for regular users is how to perform certain tasks
that require superuser privileges. These tasks include installing and updating
software, editing system configuration files, and accessing devices. In the Win-
dows world, this is often done by giving users administrative privileges. This
allows users to perform these tasks. However, it also enables programs executed
by the user to have the same abilities. This is desirable in most cases, but it also
permits malware (malicious software) such as viruses to have free run of the
computer.

In the Unix world, there has always been a larger division between reg-
ular users and administrators, owing to the multiuser heritage of Unix. The
approach taken in Unix is to grant superuser privileges only when needed.
To do this, the su and sudo commands are commonly used.

Up until a few of years ago, most Linux distributions relied on su for this
purpose. su didn’t require the configuration that sudo required, and having
a root account is traditional in Unix. This introduced a problem. Users were
tempted to operate as root unnecessarily. In fact, some users operated their sys-
tems as the root user exclusively, because it does away with all those annoying
“permission denied” messages. This is how you reduce the security of a Linux
system to that of a Windows system. Not a good idea.

When Ubuntu was introduced, its creators took a different tack. By default,
Ubuntu disables logins to the root account (by failing to set a password for the
account) and instead uses sudo to grant superuser privileges. The initial user
account is granted full access to superuser privileges via sudo and may grant sim-
ilar powers to subsequent user accounts.

Permissions 89
www.it-ebooks.info

http://www.it-ebooks.info/

chown—Change File Owner and Group
The chown command is used to change the owner and group owner of a file
or directory. Superuser privileges are required to use this command. The
syntax of chown looks like this:

chown [owner][:[group]] file...

chown can change the file owner and/or the file group owner depending
on the first argument of the command. Table 9-7 lists some examples.

Table 9-7: chown Argument Examples

Argument Results

bob Changes the ownership of the file from its current owner to
user bob.

bob:users Changes the ownership of the file from its current owner to
user bob and changes the file group owner to group users.

:admins Changes the group owner to the group admins. The file owner
is unchanged.

bob: Change the file owner from the current owner to user bob and
changes the group owner to the login group of user bob.

Let’s say that we have two users: janet, who has access to superuser priv-
ileges, and tony, who does not. User janet wants to copy a file from her home
directory to the home directory of user tony. Since user janet wants tony to
be able to edit the file, janet changes the ownership of the copied file from
janet to tony:

[janet@linuxbox ~]$ sudo cp myfile.txt ~tony
Password:
[janet@linuxbox ~]$ sudo ls -l ~tony/myfile.txt
 -rw-r--r-- 1 root root 8031 2012-03-20 14:30 /home/tony/myfile.txt
[janet@linuxbox ~]$ sudo chown tony: ~tony/myfile.txt
[janet@linuxbox ~]$ sudo ls -l ~tony/myfile.txt
 -rw-r--r-- 1 tony tony 8031 2012-03-20 14:30 /home/tony/myfile.txt

Here we see user janet copy the file from her directory to the home
directory of user tony. Next, janet changes the ownership of the file from root
(a result of using sudo) to tony. Using the trailing colon in the first argument,
janet also changed the group ownership of the file to the login group of tony,
which happens to be group tony.

Notice that after the first use of sudo, janet was not prompted for her
password? This is because sudo, in most configurations, “trusts” you for sev-
eral minutes (until its timer runs out).

90 Chapter 9

www.it-ebooks.info

http://www.it-ebooks.info/

chgrp—Change Group Ownership
In older versions of Unix, the chown command changed only file ownership,
not group ownership. For that purpose a separate command, chgrp, was
used. It works much the same way as chown, except for being more limited.

Exercising Your Privileges
Now that we have learned how this permissions thing works, it’s time to
show it off. We are going to demonstrate the solution to a common problem
—setting up a shared directory. Let’s imagine that we have two users named
bill and karen. They both have music CD collections and wish to set up a
shared directory, where they will each store their music files as Ogg Vorbis
or MP3. User bill has access to superuser privileges via sudo.

The first thing that needs to happen is the creation of a group that will
have both bill and karen as members. Using GNOME’s graphical user man-
agement tool, bill creates a group called music and adds users bill and karen
to it, as shown in Figure 9-3.

Figure 9-3: Creating a new group with GNOME

Next, bill creates the directory for the music files:

[bill@linuxbox ~]$ sudo mkdir /usr/local/share/Music
Password:

Since bill is manipulating files outside his home directory, superuser
privileges are required. After the directory is created, it has the following
ownerships and permissions:

[bill@linuxbox ~]$ ls -ld /usr/local/share/Music
drwxr-xr-x 2 root root 4096 2012-03-21 18:05 /usr/local/share/Music

Permissions 91
www.it-ebooks.info

http://www.it-ebooks.info/

As we can see, the directory is owned by root and has 755 permissions.
To make this directory shareable, bill needs to change the group ownership
and the group permissions to allow writing:

[bill@linuxbox ~]$ sudo chown :music /usr/local/share/Music
[bill@linuxbox ~]$ sudo chmod 775 /usr/local/share/Music
[bill@linuxbox ~]$ ls -ld /usr/local/share/Music
drwxrwxr-x 2 root music 4096 2012-03-21 18:05 /usr/local/share/Music

So what does this all mean? It means that we now have a directory
/usr/local/share/Music that is owned by root and allows read and write access
to group music. Group music has members bill and karen; thus bill and karen
can create files in directory /usr/local/share/Music. Other users can list the
contents of the directory but cannot create files there.

But we still have a problem. With the current permissions, files and dir-
ectories created within the Music directory will have the normal permissions
of the users bill and karen:

[bill@linuxbox ~]$ > /usr/local/share/Music/test_file
[bill@linuxbox ~]$ ls -l /usr/local/share/Music
-rw-r--r-- 1 bill bill 0 2012-03-24 20:03 test_file

Actually there are two problems. First, the default umask on this system is
0022, which prevents group members from writing files belonging to other
members of the group. This would not be a problem if the shared direct-
ory contained only files, but since this directory will store music and music
is usually organized in a hierarchy of artists and albums, members of the
group will need the ability to create files and directories inside directories
created by other members. We need to change the umask used by bill and
karen to 0002 instead.

Second, each file and directory created by one member will be set to the
primary group of the user, rather than the group music. This can be fixed by
setting the setgid bit on the directory:

[bill@linuxbox ~]$ sudo chmod g+s /usr/local/share/Music
[bill@linuxbox ~]$ ls -ld /usr/local/share/Music
drwxrwsr-x 2 root music 4096 2012-03-24 20:03 /usr/local/share/Music

Now we test to see if the new permissions fix the problem. bill sets his
umask to 0002, removes the previous test file, and creates a new test file and
directory:

[bill@linuxbox ~]$ umask 0002
[bill@linuxbox ~]$ rm /usr/local/share/Music/test_file
[bill@linuxbox ~]$ > /usr/local/share/Music/test_file
[bill@linuxbox ~]$ mkdir /usr/local/share/Music/test_dir
[bill@linuxbox ~]$ ls -l /usr/local/share/Music
drwxrwsr-x 2 bill music 4096 2012-03-24 20:24 test_dir
-rw-rw-r-- 1 bill music 0 2012-03-24 20:22 test_file
[bill@linuxbox ~]$

92 Chapter 9

www.it-ebooks.info

http://www.it-ebooks.info/

Both files and directories are now created with the correct permissions
to allow all members of the group music to create files and directories inside
the Music directory.

The one remaining issue is umask. The necessary setting lasts only until
the end of the session and then must be reset. In Chapter 11, we’ll look at
making the change to umask permanent.

Changing Your Password
The last topic we’ll cover in this chapter is setting passwords for yourself
(and for other users if you have access to superuser privileges). To set or
change a password, the passwd command is used. The command syntax
looks like this:

passwd [user]

To change your password, just enter the passwd command. You will be
prompted for your old password and your new password:

[me@linuxbox ~]$ passwd
(current) UNIX password:
New UNIX password:

The passwd command will try to enforce use of “strong” passwords. This
means it will refuse to accept passwords that are too short, are too similar to
previous passwords, are dictionary words, or are too easily guessed:

[me@linuxbox ~]$ passwd
(current) UNIX password:
New UNIX password:
BAD PASSWORD: is too similar to the old one
New UNIX password:
BAD PASSWORD: it is WAY too short
New UNIX password:
BAD PASSWORD: it is based on a dictionary word

If you have superuser privileges, you can specify a username as an argu-
ment to the passwd command to set the password for another user. Other
options are available to the superuser to allow account locking, password
expiration, and so on. See the passwd man page for details.

Permissions 93
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

P R O C E S S E S

Modern operating systems are usually multitasking,
meaning that they create the illusion of doing more
than one thing at once by rapidly switching from one
executing program to another. The Linux kernel
manages this through the use of processes. Processes
are how Linux organizes the different programs wait-
ing for their turn at the CPU.

Sometimes a computer will become sluggish, or an application will stop
responding. In this chapter, we will look at some of the tools available at the
command line that let us examine what programs are doing and how to ter-
minate processes that are misbehaving.

This chapter will introduce the following commands:

ps—Report a snapshot of current processes.

top—Display tasks.

jobs—List active jobs.

www.it-ebooks.info

http://www.it-ebooks.info/

bg—Place a job in the background.

fg—Place a job in the foreground.

kill—Send a signal to a process.

killall—Kill processes by name.

shutdown—Shut down or reboot the system.

How a Process Works
When a system starts up, the kernel initiates a few of its own activities as pro-
cesses and launches a program called init. init, in turn, runs a series of shell
scripts (located in /etc) called init scripts, which start all the system services.
Many of these services are implemented as daemon programs, programs that
just sit in the background and do their thing without having any user inter-
face. So even if we are not logged in, the system is at least a little busy per-
forming routine stuff.

The fact that a program can launch other programs is expressed in the
process scheme as a parent process producing a child process.

The kernel maintains information about each process to help keep
things organized. For example, each process is assigned a number called a
process ID (PID). PIDs are assigned in ascending order, with init always get-
ting PID 1. The kernel also keeps track of the memory assigned to each pro-
cess, as well as the processes’ readiness to resume execution. Like files,
processes also have owners and user IDs, effective user IDs, and so on.

Viewing Processes with ps
The most commonly used command to view processes (there are several)
is ps. The ps program has a lot of options, but in it simplest form it is used
like this:

[me@linuxbox ~]$ ps
 PID TTY TIME CMD
 5198 pts/1 00:00:00 bash
10129 pts/1 00:00:00 ps

The result in this example lists two processes: process 5198 and pro-
cess 10129, which are bash and ps respectively. As we can see, by default ps
doesn’t show us very much, just the processes associated with the current
terminal session. To see more, we need to add some options, but before we
do that, let’s look at the other fields produced by ps. TTY is short for teletype
and refers to the controlling terminal for the process. Unix is showing its age
here. The TIME field is the amount of CPU time consumed by the process. As
we can see, neither process makes the computer work very hard.

96 Chapter 10

www.it-ebooks.info

http://www.it-ebooks.info/

If we add an option, we can get a bigger picture of what the system is
doing:

[me@linuxbox ~]$ ps x
 PID TTY STAT TIME COMMAND
 2799 ? Ssl 0:00 /usr/libexec/bonobo-activation-server –ac
 2820 ? Sl 0:01 /usr/libexec/evolution-data-server-1.10 --
15647 ? Ss 0:00 /bin/sh /usr/bin/startkde
15751 ? Ss 0:00 /usr/bin/ssh-agent /usr/bin/dbus-launch --
15754 ? S 0:00 /usr/bin/dbus-launch --exit-with-session
15755 ? Ss 0:01 /bin/dbus-daemon --fork --print-pid 4 –pr
15774 ? Ss 0:02 /usr/bin/gpg-agent -s –daemon
15793 ? S 0:00 start_kdeinit --new-startup +kcminit_start
15794 ? Ss 0:00 kdeinit Running...
15797 ? S 0:00 dcopserver –nosid

and many more...

Adding the x option (note that there is no leading dash) tells ps to show
all of our processes regardless of what terminal (if any) they are controlled
by. The presence of a ? in the TTY column indicates no controlling terminal.
Using this option, we see a list of every process that we own.

Since the system is running a lot of processes, ps produces a long list. It
is often helpful to pipe the output from ps into less for easier viewing. Some
option combinations also produce long lines of output, so maximizing the
terminal emulator window may be a good idea, too.

A new column titled STAT has been added to the output. STAT is short for
state and reveals the current status of the process, as shown in Table 10-1.

Table 10-1: Process States

State Meaning

R Running. The process is running or ready to run.

S Sleeping. The process is not running; rather, it is waiting for an event,
such as a keystroke or network packet.

D Uninterruptible sleep. Process is waiting for I/O such as a disk drive.

T Stopped. Process has been instructed to stop (more on this later).

Z A defunct or “zombie” process. This is a child process that has
terminated but has not been cleaned up by its parent.

< A high-priority process. It’s possible to grant more importance to a
process, giving it more time on the CPU. This property of a process is
called niceness. A process with high priority is said to be less nice
because it’s taking more of the CPU’s time, which leaves less for
everybody else.

N A low-priority process. A process with low priority (a nice process)
will get processor time only after other processes with higher priority
have been serviced.

Processes 97
www.it-ebooks.info

http://www.it-ebooks.info/

The process state may be followed by other characters. These indicate
various exotic process characteristics. See the ps man page for more detail.

Another popular set of options is aux (without a leading dash). This
gives us even more information:

[me@linuxbox ~]$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 2136 644 ? Ss Mar05 0:31 init
root 2 0.0 0.0 0 0 ? S< Mar05 0:00 [kt]
root 3 0.0 0.0 0 0 ? S< Mar05 0:00 [mi]
root 4 0.0 0.0 0 0 ? S< Mar05 0:00 [ks]
root 5 0.0 0.0 0 0 ? S< Mar05 0:06 [wa]
root 6 0.0 0.0 0 0 ? S< Mar05 0:36 [ev]
root 7 0.0 0.0 0 0 ? S< Mar05 0:00 [kh]

and many more...

This set of options displays the processes belonging to every user. Using
the options without the leading dash invokes the command with “BSD-style”
behavior. The Linux version of ps can emulate the behavior of the ps pro-
gram found in several Unix implementations. With these options, we get the
additional columns shown in Table 10-2.

Table 10-2: BSD-Style ps Column Headers

Header Meaning

USER User ID. This is the owner of the process.

%CPU CPU usage as a percent.

%MEM Memory usage as a percent.

VSZ Virtual memory size.

RSS Resident Set Size. The amount of physical memory (RAM) the
process is using in kilobytes.

START Time when the process started. For values over 24 hours, a date
is used.

Viewing Processes Dynamically with top
While the ps command can reveal a lot about what the machine is doing, it
provides only a snapshot of the machine’s state at the moment the ps com-
mand is executed. To see a more dynamic view of the machine’s activity, we
use the top command:

[me@linuxbox ~]$ top

The top program displays a continuously updating (by default, every
3 seconds) display of the system processes listed in order of process activity.

98 Chapter 10

www.it-ebooks.info

http://www.it-ebooks.info/

Its name comes from the fact that the top program is used to see the “top”
processes on the system. The top display consists of two parts: a system sum-
mary at the top of the display, followed by a table of processes sorted by
CPU activity:

top - 14:59:20 up 6:30, 2 users, load average: 0.07, 0.02, 0.00
Tasks: 109 total, 1 running, 106 sleeping, 0 stopped, 2 zombie
Cpu(s): 0.7%us, 1.0%sy, 0.0%ni, 98.3%id, 0.0%wa, 0.0%hi, 0.0%si
Mem: 319496k total, 314860k used, 4636k free, 19392k buff
Swap: 875500k total, 149128k used, 726372k free, 114676k cach

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 6244 me 39 19 31752 3124 2188 S 6.3 1.0 16:24.42 trackerd
11071 me 20 0 2304 1092 840 R 1.3 0.3 0:00.14 top
 6180 me 20 0 2700 1100 772 S 0.7 0.3 0:03.66 dbus-dae
 6321 me 20 0 20944 7248 6560 S 0.7 2.3 2:51.38 multiloa
 4955 root 20 0 104m 9668 5776 S 0.3 3.0 2:19.39 Xorg
 1 root 20 0 2976 528 476 S 0.0 0.2 0:03.14 init
 2 root 15 -5 0 0 0 S 0.0 0.0 0:00.00 kthreadd
 3 root RT -5 0 0 0 S 0.0 0.0 0:00.00 migratio
 4 root 15 -5 0 0 0 S 0.0 0.0 0:00.72 ksoftirq
 5 root RT -5 0 0 0 S 0.0 0.0 0:00.04 watchdog
 6 root 15 -5 0 0 0 S 0.0 0.0 0:00.42 events/0
 7 root 15 -5 0 0 0 S 0.0 0.0 0:00.06 khelper
 41 root 15 -5 0 0 0 S 0.0 0.0 0:01.08 kblockd/
 67 root 15 -5 0 0 0 S 0.0 0.0 0:00.00 kseriod
 114 root 20 0 0 0 0 S 0.0 0.0 0:01.62 pdflush
 116 root 15 -5 0 0 0 S 0.0 0.0 0:02.44 kswapd0

The system summary contains a lot of good stuff; see Table 10-3 for a
rundown.

Table 10-3: top Information Fields

Row Field Meaning

1 top Name of the program.

14:59:20 Current time of day.

up 6:30 This is called uptime. It is the amount of time since
the machine was last booted. In this example, the
system has been up for 6½ hours.

2 users Two users are logged in.

load average: Load average refers to the number of processes
that are waiting to run; that is, the number of pro-
cesses that are in a runnable state and are sharing
the CPU. Three values are shown, each for a differ-
ent period of time. The first is the average for the
last 60 seconds, the next the previous 5 minutes,
and finally the previous 15 minutes. Values under
1.0 indicate that the machine is not busy.

Processes 99

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Table 10-3 (continued)

Row Field Meaning

2 Tasks: This summarizes the number of processes and their
various process states.

0.7%us 0.7% of the CPU is being used for user processes.
This means processes outside of the kernel itself.

1.0%sy 1.0% of the CPU is being used for system (kernel)
processes.

0.0%ni 0.0% of the CPU is being used by nice (low-priority)
processes.

98.3%id 98.3% of the CPU is idle.

0.0%wa 0.0% of the CPU is waiting for I/O.

4 Mem: Shows how physical RAM is being used.

5 Swap: Shows how swap space (virtual memory) is
being used.

The top program accepts a number of keyboard commands. The two
most interesting are h, which displays the program’s help screen, and q,
which quits top.

Both major desktop environments provide graphical applications that
display information similar to top (in much the same way that Task Manager
in Windows does), but I find that top is better than the graphical versions
because it is faster and consumes far fewer system resources. After all, our
system monitor program shouldn’t add to the system slowdown that we are
trying to track.

Controlling Processes
Now that we can see and monitor processes, let’s gain some control over
them. For our experiments, we’re going to use a little program called xlogo
as our guinea pig. The xlogo program is a sample program supplied with the
X Window System (the underlying engine that makes the graphics on our
display go), which simply displays a resizable window containing the X logo.
First, we’ll get to know our test subject:

[me@linuxbox ~]$ xlogo

After we enter the command, a small window containing the logo
should appear somewhere on the screen. On some systems, xlogo may
print a warning message, but it may be safely ignored.

100 Chapter 10

www.it-ebooks.info

http://www.it-ebooks.info/

Note: If your system does not include the xlogo program, try using gedit or kwrite instead.

We can verify that xlogo is running by resizing its window. If the logo is
redrawn in the new size, the program is running.

Notice how our shell prompt has not returned? This is because the shell
is waiting for the program to finish, just like all the other programs we have
used so far. If we close the xlogo window, the prompt returns.

Interrupting a Process
Let’s observe what happens when we run xlogo again. First, enter the xlogo
command and verify that the program is running. Next, return to the ter-
minal window and press CTRL-C.

[me@linuxbox ~]$ xlogo
[me@linuxbox ~]$

In a terminal, pressing CTRL-C interrupts a program. This means that we
politely asked the program to terminate. After we pressed CTRL-C, the xlogo
window closed and the shell prompt returned.

Many (but not all) command-line programs can be interrupted by using
this technique.

Putting a Process in the Background
Let’s say we wanted to get the shell prompt back without terminating the
xlogo program. We’ll do this by placing the program in the background.
Think of the terminal as having a foreground (with stuff visible on the sur-
face, like the shell prompt) and a background (with hidden stuff below the
surface). To launch a program so that it is immediately placed in the back-
ground, we follow the command with an ampersand character (&):

[me@linuxbox ~]$ xlogo &
[1] 28236
[me@linuxbox ~]$

After the command was entered, the xlogo window appeared and the
shell prompt returned, but some funny numbers were printed too. This
message is part of a shell feature called job control. With this message, the
shell is telling us that we have started job number 1 ([1]) and that it has PID
28236. If we run ps, we can see our process:

[me@linuxbox ~]$ ps
 PID TTY TIME CMD
10603 pts/1 00:00:00 bash
28236 pts/1 00:00:00 xlogo
28239 pts/1 00:00:00 ps

Processes 101
www.it-ebooks.info

http://www.it-ebooks.info/

The shell’s job control facility also gives us a way to list the jobs that
have been launched from our terminal. Using the jobs command, we can
see the following list:

[me@linuxbox ~]$ jobs
[1]+ Running xlogo &

The results show that we have one job, numbered 1, that it is running,
and that the command was xlogo &.

Returning a Process to the Foreground
A process in the background is immune from keyboard input, including any
attempt to interrupt it with a CTRL-C. To return a process to the foreground,
use the fg command, as in this example:

[me@linuxbox ~]$ jobs
[1]+ Running xlogo &
[me@linuxbox ~]$ fg %1
xlogo

The command fg followed by a percent sign and the job number (called
a jobspec) does the trick. If we have only one background job, the jobspec is
optional. To terminate xlogo, type CTRL-C.

Stopping (Pausing) a Process
Sometimes we’ll want to stop a process without terminating it. This is often
done to allow a foreground process to be moved to the background. To stop
a foreground process, type CTRL-Z. Let’s try it. At the command prompt, type
xlogo, press the ENTER key, and then type CTRL-Z:

[me@linuxbox ~]$ xlogo
[1]+ Stopped xlogo
[me@linuxbox ~]$

After stopping xlogo, we can verify that the program has stopped by
attempting to resize the xlogo window. We will see that it appears quite
dead. We can either restore the program to the foreground, using the fg
command, or move the program to the background with the bg command:

[me@linuxbox ~]$ bg %1
[1]+ xlogo &
[me@linuxbox ~]$

As with the fg command, the jobspec is optional if there is only one job.
Moving a process from the foreground to the background is handy if we

launch a graphical program from the command but forget to place it in the
background by appending the trailing &.

102 Chapter 10

www.it-ebooks.info

http://www.it-ebooks.info/

Why would you want to launch a graphical program from the com-
mand line? There are two reasons. First, the program you wish to run might
not be listed on the window manager’s menus (such as xlogo).

Second, by launching a program from the command line, you might be
able to see error messages that would be invisible if the program were launched
graphically. Sometimes, a program will fail to start up when launched from
the graphical menu. By launching it from the command line instead, we may
see an error message that will reveal the problem. Also, some graphical pro-
grams have many interesting and useful command-line options.

Signals
The kill command is used to “kill” (terminate) processes. This allows us to
end the execution of a program that is behaving badly or otherwise refuses
to terminate on its own. Here’s an example:

[me@linuxbox ~]$ xlogo &
[1] 28401
[me@linuxbox ~]$ kill 28401
[1]+ Terminated xlogo

We first launch xlogo in the background. The shell prints the jobspec and
the PID of the background process. Next, we use the kill command and spe-
cify the PID of the process we want to terminate. We could also have specified
the process using a jobspec (for example, %1) instead of a PID.

While this is all very straightforward, there is more to it. The kill com-
mand doesn’t exactly “kill” processes; rather it sends them signals. Signals
are one of several ways that the operating system communicates with pro-
grams. We have already seen signals in action with the use of CTRL-C and
CTRL-Z. When the terminal receives one of these keystrokes, it sends a signal
to the program in the foreground. In the case of CTRL-C, a signal called INT
(Interrupt) is sent; with CTRL-Z, a signal called TSTP (Terminal Stop) is sent.
Programs, in turn, “listen” for signals and may act upon them as they are
received. The fact that a program can listen and act upon signals allows it
to do things like save work in progress when it is sent a termination signal.

Sending Signals to Processes with kill
The most common syntax for the kill command looks like this:

kill [-signal] PID...

If no signal is specified on the command line, then the TERM (Termin-
ate) signal is sent by default. The kill command is most often used to send
the signals shown in Table 10-4.

Processes 103
www.it-ebooks.info

http://www.it-ebooks.info/

Table 10-4: Common Signals

Number Name Meaning

1 HUP Hang up. This is a vestige of the good old days
when terminals were attached to remote computers
with phone lines and modems. The signal is used
to indicate to programs that the controlling ter-
minal has “hung up.” The effect of this signal can
be demonstrated by closing a terminal session.
The foreground program running on the terminal
will be sent the signal and will terminate.

This signal is also used by many daemon
programs to cause a reinitialization. This means
that when a daemon is sent this signal, it will
restart and reread its configuration file. The
Apache web server is an example of a daemon
that uses the HUP signal in this way.

2 INT Interrupt. Performs the same function as the CTRL-C
key sent from the terminal. It will usually terminate
a program.

9 KILL Kill. This signal is special. Whereas programs may
choose to handle signals sent to them in different
ways, including by ignoring them altogether, the
KILL signal is never actually sent to the target
program. Rather, the kernel immediately termin-
ates the process. When a process is terminated in
this manner, it is given no opportunity to “clean
up” after itself or save its work. For this reason, the
KILL signal should be used only as a last resort
when other termination signals fail.

15 TERM Terminate. This is the default signal sent by
the kill command. If a program is still “alive”
enough to receive signals, it will terminate.

18 CONT Continue. This will restore a process after a STOP
signal.

19 STOP Stop. This signal causes a process to pause
without terminating. Like the KILL signal, it is not
sent to the target process, and thus it cannot be
ignored.

104 Chapter 10

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s try out the kill command:

[me@linuxbox ~]$ xlogo &
[1] 13546
[me@linuxbox ~]$ kill -1 13546
[1]+ Hangup xlogo

In this example, we start the xlogo program in the background and then
send it a HUP signal with kill. The xlogo program terminates, and the shell
indicates that the background process has received a hangup signal. You
may need to press the ENTER key a couple of times before you see the mes-
sage. Note that signals may be specified either by number or by name,
including the name prefixed with the letters SIG :

[me@linuxbox ~]$ xlogo &
[1] 13601
[me@linuxbox ~]$ kill -INT 13601
[1]+ Interrupt xlogo
[me@linuxbox ~]$ xlogo &
[1] 13608
[me@linuxbox ~]$ kill -SIGINT 13608
[1]+ Interrupt xlogo

Repeat the example above and try out the other signals. Remember, you
can also use jobspecs in place of PIDs.

Processes, like files, have owners, and you must be the owner of a pro-
cess (or the superuser) in order to send it signals with kill.

In addition to the signals listed in Table 10-4, which are most often used
with kill, other signals are frequently used by the system. Table 10-5 lists the
other common signals.

Table 10-5: Other Common Signals

Number Name Meaning

3 QUIT Quit.

11 SEGV Segmentation violation. This signal is sent if a
program makes illegal use of memory; that is, it
tried to write somewhere it was not allowed to.

20 TSTP Terminal stop. This is the signal sent by the terminal
when CTRL-Z is pressed. Unlike the STOP signal, the
TSTP signal is received by the program but the pro-
gram may choose to ignore it.

28 WINCH Window change. This is a signal sent by the system
when a window changes size. Some programs,
like top and less, will respond to this signal by
redrawing themselves to fit the new window
dimensions.

Processes 105
www.it-ebooks.info

http://www.it-ebooks.info/

For the curious, a complete list of signals can be seen with the following
command:

[me@linuxbox ~]$ kill -l

Sending Signals to Multiple Processes with killall
It’s also possible to send signals to multiple processes matching a specified
program or username by using the killall command. Here is the syntax:

killall [-u user] [-signal] name...

To demonstrate, we will start a couple of instances of the xlogo program
and then terminate them:

[me@linuxbox ~]$ xlogo &
[1] 18801
[me@linuxbox ~]$ xlogo &
[2] 18802
[me@linuxbox ~]$ killall xlogo
[1]- Terminated xlogo
[2]+ Terminated xlogo

Remember, as with kill, you must have superuser privileges to send sig-
nals to processes that do not belong to you.

More Process-Related Commands
Since monitoring processes is an important system administration task,
there are a lot of commands for it. Table 10-6 lists some to play with.

Table 10-6: Other Process-Related Commands

Command Description

pstree Outputs a process list arranged in a tree-like pattern showing
the parent/child relationships between processes.

vmstat Outputs a snapshot of system resource usage including
memory, swap, and disk I/O. To see a continuous display,
follow the command with a time delay (in seconds) for updates
(e.g., vmstat 5). Terminate the output with CTRL-C.

xload A graphical program that draws a graph showing system load
over time.

tload Similar to the xload program, but draws the graph in the
terminal. Terminate the output with CTRL-C.

106 Chapter 10

www.it-ebooks.info

http://www.it-ebooks.info/

