
PART 2
C O N F I G U R A T I O N A N D T H E

E N V I R O N M E N T

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

T H E E N V I R O N M E N T

As we discussed earlier, the shell maintains a body of
information during our shell session called the envi-
ronment. Data stored in the environment is used by
programs to determine facts about our configuration.
While most programs use configuration files to store program settings, some
programs will also look for values stored in the environment to adjust their
behavior. Knowing this, we can use the environment to customize our shell
experience.

In this chapter, we will work with the following commands:

printenv—Print part or all of the environment.

set—Set shell options.

export—Export environment to subsequently executed programs.

alias—Create an alias for a command.

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Stored in the Environment?
The shell stores two basic types of data in the environment, although, with
bash, the types are largely indistinguishable. They are environment variables
and shell variables. Shell variables are bits of data placed there by bash, and
environment variables are basically everything else. In addition to variables,
the shell also stores some programmatic data, namely aliases and shell func-
tions. We covered aliases in Chapter 5, and shell functions (which are related
to shell scripting) will be covered in Part 4.

Examining the Environment
To see what is stored in the environment, we can use either the set built in
bash or the printenv program. The set command will show both the shell and
environment variables, while printenv will display only the latter. Since the
list of environment contents will be fairly long, it is best to pipe the output
of either command into less:

[me@linuxbox ~]$ printenv | less

Doing so, we should get something that looks like this:

KDE_MULTIHEAD=false
SSH_AGENT_PID=6666
HOSTNAME=linuxbox
GPG_AGENT_INFO=/tmp/gpg-PdOt7g/S.gpg-agent:6689:1
SHELL=/bin/bash
TERM=xterm
XDG_MENU_PREFIX=kde-
HISTSIZE=1000
XDG_SESSION_COOKIE=6d7b05c65846c3eaf3101b0046bd2b00-1208521990.996705-11770561
99
GTK2_RC_FILES=/etc/gtk-2.0/gtkrc:/home/me/.gtkrc-2.0:/home/me/.kde/share/confi
g/gtkrc-2.0
GTK_RC_FILES=/etc/gtk/gtkrc:/home/me/.gtkrc:/home/me/.kde/share/config/gtkrc
GS_LIB=/home/me/.fonts
WINDOWID=29360136
QTDIR=/usr/lib/qt-3.3
QTINC=/usr/lib/qt-3.3/include
KDE_FULL_SESSION=true
USER=me
LS_COLORS=no=00:fi=00:di=00;34:ln=00;36:pi=40;33:so=00;35:bd=40;33;01:cd=40;33
;01:or=01;05;37;41:mi=01;05;37;41:ex=00;32:*.cmd=00;32:*.exe:

What we see is a list of environment variables and their values. For
example, we see a variable called USER, which contains the value me. The
printenv command can also list the value of a specific variable:

[me@linuxbox ~]$ printenv USER
me

110 Chapter 11

www.it-ebooks.info

http://www.it-ebooks.info/

The set command, when used without options or arguments, will dis-
play both the shell and environment variables, as well as any defined shell
functions.

[me@linuxbox ~]$ set | less

Unlike printenv, its output is courteously sorted in alphabetical order.
It is also possible to view the contents of a single variable using the echo

command, like this:

[me@linuxbox ~]$ echo $HOME
/home/me

One element of the environment that neither set nor printenv displays is
aliases. To see them, enter the alias command without arguments:

[me@linuxbox ~]$ alias
alias l.='ls -d .* --color=tty'
alias ll='ls -l --color=tty'
alias ls='ls --color=tty'
alias vi='vim'
alias which='alias | /usr/bin/which --tty-only --read-alias --show-dot --show-
tilde'

Some Interesting Variables
The environment contains quite a few variables, and though your environ-
ment may differ from the one presented here, you will likely see the vari-
ables shown in Table 11-1 in your environment.

Table 11-1: Environment Variables

Variable Contents

DISPLAY The name of your display if you are running a graphical
environment. Usually this is :0, meaning the first display
generated by the X server.

EDITOR The name of the program to be used for text editing.

SHELL The name of your shell program.

HOME The pathname of your home directory.

LANG Defines the character set and collation order of your language.

OLD_PWD The previous working directory.

PAGER The name of the program to be used for paging output. This is
often set to /usr/bin/less.

PATH A colon-separated list of directories that are searched when you
enter the name of an executable program.

The Environment 111

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Table 11-1 (continued)

Variable Contents

PS1 Prompt String 1. This defines the contents of your shell prompt.
As we will later see, this can be extensively customized.

PWD The current working directory.

TERM The name of your terminal type. Unix-like systems support many
terminal protocols; this variable sets the protocol to be used
with your terminal emulator.

TZ Specifies your time zone. Most Unix-like systems maintain the
computer’s internal clock in Coordinated Universal Time (UTC)
and then display the local time by applying an offset specified
by this variable.

USER Your username.

Don’t worry if some of these values are missing. They vary by
distribution.

How Is the Environment Established?
When we log on to the system, the bash program starts and reads a series
of configuration scripts called startup files, which define the default envi-
ronment shared by all users. This is followed by more startup files in our
home directory that define our personal environment. The exact sequence
depends on the type of shell session being started.

Login and Non-login Shells
There are two kinds of shell sessions: a login shell session and a non-login
shell session.

A login shell session is one in which we are prompted for our username and
password; for example, when we start a virtual console session. A non-login
shell session typically occurs when we launch a terminal session in the GUI.

Login shells read one or more startup files, as shown in Table 11-2.

Table 11-2: Startup Files for Login Shell Sessions

File Contents

/etc/profile A global configuration script that applies to all users.

~/.bash_profile A user’s personal startup file. Can be used to extend or
override settings in the global configuration script.

112 Chapter 11

www.it-ebooks.info

http://www.it-ebooks.info/

Table 11-2 (continued)

File Contents

~/.bash_login If ~/.bash_profile is not found, bash attempts to read this
script.

~/.profile If neither ~/.bash_profile nor ~/.bash_login is found, bash
attempts to read this file. This is the default in Debian-based
distributions, such as Ubuntu.

Non-login shell sessions read the startup files as shown in Table 11-3.

Table 11-3: Startup Files for Non-Login Shell Sessions

File Contents

/etc/bash.bashrc A global configuration script that applies to all users.

~/.bashrc A user’s personal startup file. Can be used to extend or
override settings in the global configuration script.

In addition to reading the startup files above, non-login shells inherit
the environment from their parent process, usually a login shell.

Take a look at your system and see which of these startup files you have.
Remember: Since most of the filenames listed above start with a period
(meaning that they are hidden), you will need to use the -a option when
using ls.

The ~/.bashrc file is probably the most important startup file from the
ordinary user’s point of view, since it is almost always read. Non-login shells
read it by default, and most startup files for login shells are written in such a
way as to read the ~/.bashrc file as well.

What’s in a Startup File?
If we take a look inside a typical .bash_profile (taken from a CentOS-4 system),
it looks something like this:

.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/bin
export PATH

The Environment 113
www.it-ebooks.info

http://www.it-ebooks.info/

Lines that begin with a # are comments and are not read by the shell.
These are there for human readability. The first interesting thing occurs
on the fourth line, with the following code:

if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

This is called an if compound command, which we will cover fully when we
get to shell scripting in Part 4, but for now we will translate:

If the file "~/.bashrc" exists, then
read the "~/.bashrc" file.

We can see that this bit of code is how a login shell gets the contents of
.bashrc. The next thing in our startup file has to do with the PATH variable.

Ever wonder how the shell knows where to find commands when we
enter them on the command line? For example, when we enter ls, the shell
does not search the entire computer to find /bin/ls (the full pathname of
the ls command); rather, it searches a list of directories that are contained
in the PATH variable.

The PATH variable is often (but not always, depending on the distribu-
tion) set by the /etc/profile startup file and with this code:

PATH=$PATH:$HOME/bin

PATH is modified to add the directory $HOME/bin to the end of the
list. This is an example of parameter expansion, which we touched on in
Chapter 7. To demonstrate how this works, try the following:

[me@linuxbox ~]$ foo="This is some"
[me@linuxbox ~]$ echo $foo
This is some
[me@linuxbox ~]$ foo=$foo" text."
[me@linuxbox ~]$ echo $foo
This is some text.

Using this technique, we can append text to the end of a variable’s
contents.

By adding the string $HOME/bin to the end of the PATH variable’s contents,
the directory $HOME/bin is added to the list of directories searched when a
command is entered. This means that when we want to create a directory
within our home directory for storing our own private programs, the shell
is ready to accommodate us. All we have to do is call it bin, and we’re ready
to go.

Note: Many distributions provide this PATH setting by default. Some Debian-based distribu-
tions, such as Ubuntu, test for the existence of the ~/bin directory at login and
dynamically add it to the PATH variable if the directory is found.

114 Chapter 11

www.it-ebooks.info

http://www.it-ebooks.info/

Lastly, we have this:

export PATH

The export command tells the shell to make the contents of PATH avail-
able to child processes of this shell.

Modifying the Environment
Since we know where the startup files are and what they contain, we can
modify them to customize our environment.

Which Files Should We Modify?
As a general rule, to add directories to your PATH or define additional envi-
ronment variables, place those changes in .bash_profile (or equivalent,
according to your distribution—for example, Ubuntu uses .profile). For
everything else, place the changes in .bashrc. Unless you are the system
administrator and need to change the defaults for all users of the system,
restrict your modifications to the files in your home directory. It is certainly
possible to change the files in /etc such as profile, and in many cases it would
be sensible to do so, but for now let’s play it safe.

Text Editors
To edit (i.e., modify) the shell’s startup files, as well as most of the other
configuration files on the system, we use a program called a text editor. A
text editor is a program that is, in some ways, like a word processor in that
it allows you to edit the words on the screen with a moving cursor. It differs
from a word processor by supporting only pure text, and it often contains
features designed for writing programs. Text editors are the central tool
used by software developers to write code and by system administrators to
manage the configuration files that control the system.

A lot of text editors are available for Linux; your system probably has
several installed. Why so many different ones? Probably because program-
mers like writing them, and since programmers use editors extensively, they
like to express their own desires as to how editors should work.

Text editors fall into two basic categories: graphical and text based.
GNOME and KDE both include some popular graphical editors. GNOME
ships with an editor called gedit, which is usually called Text Editor in
the GNOME menu. KDE usually ships with three, which are (in order of
increasing complexity) kedit, kwrite, and kate.

There are many text-based editors. The popular ones you will encounter
are nano, vi, and emacs. The nano editor is a simple, easy-to-use editor designed
as a replacement for the pico editor supplied with the PINE email suite. The
vi editor (on most Linux systems replaced by a program named vim, which is
short for Vi IMproved) is the traditional editor for Unix-like systems. It is the

The Environment 115
www.it-ebooks.info

http://www.it-ebooks.info/

subject of Chapter 12. The emacs editor was originally written by Richard
Stallman. It is a gigantic, all-purpose, does-everything programming environ-
ment. Though readily available, it is seldom installed on most Linux systems
by default.

Using a Text Editor
All text editors can be invoked from the command line by typing the name
of the editor followed by the name of the file you want to edit. If the file
does not already exist, the editor will assume that you want to create a new
file. Here is an example using gedit:

[me@linuxbox ~]$ gedit some_file

This command will start the gedit text editor and load the file named
some_file, if it exists.

All graphical text editors are pretty self-explanatory, so we won’t cover
them here. Instead, we will concentrate on our first text-based text editor,
nano. Let’s fire up nano and edit the .bashrc file. But before we do that, let’s
practice some safe computing. Whenever we edit an important configura-
tion file, it is always a good idea to create a backup copy of the file first. This
protects us in case we mess the file up while editing. To create a backup of
the .bashrc file, do this:

[me@linuxbox ~]$ cp .bashrc .bashrc.bak

It doesn’t matter what you call the backup file; just pick an understand-
able name. The extensions .bak, .sav, .old, and .orig are all popular ways of
indicating a backup file. Oh, and remember that cp will overwrite existing files
silently.

Now that we have a backup file, we’ll start the editor:

[me@linuxbox ~]$ nano .bashrc

Once nano starts, we’ll get a screen like this:

 GNU nano 2.0.3 File: .bashrc

.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

User specific aliases and functions

 [Read 8 lines]
^G Get Help^O WriteOut^R Read Fil^Y Prev Pag^K Cut Text^C Cur Pos
^X Exit ^J Justify ^W Where Is^V Next Pag^U UnCut Te^T To Spell

116 Chapter 11

www.it-ebooks.info

http://www.it-ebooks.info/

Note: If your system does not have nano installed, you may use a graphical editor instead.

The screen consists of a header at the top, the text of the file being
edited in the middle, and a menu of commands at the bottom. Since nano
was designed to replace the text editor supplied with an email client, it is
rather short on editing features.

The first command you should learn in any text editor is how to exit the
program. In the case of nano, you press CTRL-X to exit. This is indicated in
the menu at the bottom of the screen. The notation ^X means CTRL-X. This is
a common notation for the control characters used by many programs.

The second command we need to know is how to save our work. With
nano it’s CTRL-O. With this knowledge under our belts, we’re ready to do
some editing. Using the down-arrow key and/or the page-down key, move
the cursor to the end of the file, and then add the following lines to the
.bashrc file:

umask 0002
export HISTCONTROL=ignoredups
export HISTSIZE=1000
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'

Note: Your distribution may already include some of these, but duplicates won’t hurt
anything.

Table 11-4 lists the meanings of our additions.

Table 11-4: Additions to Our .bashrc File

Line Meaning

Umask 0002 Sets the umask to solve the problem with
shared directories we discussed in
Chapter 9.

export HISTCONTROL=ignoredups Causes the shell’s history recording
feature to ignore a command if the same
command was just recorded.

export HISTSIZE=1000 Increases the size of the command history
from the default of 500 lines to 1000
lines.

alias l.='ls -d .* --color=auto' Creates a new command called l.,
which displays all directory entries that
begin with a dot.

alias ll='ls -l –color=auto' Creates a new command called ll,
which displays a long-format directory
listing.

The Environment 117
www.it-ebooks.info

http://www.it-ebooks.info/

As we can see, many of our additions are not intuitively obvious, so it
would be a good idea to add some comments to our .bashrc file to help
explain things to the humans. Using the editor, change our additions to
look like this:

Change umask to make directory sharing easier
umask 0002

Ignore duplicates in command history and increase
history size to 1000 lines
export HISTCONTROL=ignoredups
export HISTSIZE=1000

Add some helpful aliases
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'

Ah, much better! With our changes complete, press CTRL-O to save our
modified .bashrc file and CTRL-X to exit nano.

Activating Our Changes
The changes we have made to our .bashrc will not take effect until we close
our terminal session and start a new one, because the .bashrc file is only read
at the beginning of a session. However, we can force bash to reread the mod-
ified .bashrc file with the following command:

[me@linuxbox ~]$ source .bashrc

After doing this, we should be able to see the effect of our changes. Try
out one of the new aliases:

[me@linuxbox ~]$ ll

W H Y C O M M E N T S A R E I M P O R T A N T

Whenever you modify configuration files, it’s a good idea to add some com-
ments to document your changes. Sure, you will remember what you changed
tomorrow, but what about six months from now? Do yourself a favor and add
some comments. While you’re at it, it’s not a bad idea to keep a log of what
changes you make.

Shell scripts and bash startup files use a # symbol to begin a comment.
Other configuration files may use other symbols. Most configuration files will
have comments. Use them as a guide.

You will often see lines in configuration files that are commented out to pre-
vent them from being used by the affected program. This is done to give the
reader suggestions for possible configuration choices or examples of correct

118 Chapter 11

www.it-ebooks.info

http://www.it-ebooks.info/

configuration syntax. For example, the .bashrc file of Ubuntu 8.04 contains
these lines:

some more ls aliases
#alias ll='ls -l'
#alias la='ls -A'
#alias l='ls -CF'

The last three lines are valid alias definitions that have been commented
out. If you remove the leading # symbols from these three lines, a technique
called uncommenting, you will activate the aliases. Conversely, if you add a # sym-
bol to the beginning of a line, you can deactivate a configuration line while pre-
serving the information it contains.

Final Note
In this chapter we learned an essential skill—editing configuration files with
a text editor. Moving forward, as we read man pages for commands, take
note of the environment variables that commands support. There may be a
gem or two. In later chapters we will learn about shell functions, a powerful
feature that you can also include in the bash startup files to add to your
arsenal of custom commands.

The Environment 119
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

A G E N T L E I N T R O D U C T I O N
T O V I

There is an old joke about a visitor to New York City
asking a passerby for directions to the city’s famous
classical music venue:

Visitor: Excuse me, how do I get to Carnegie Hall?
Passerby: Practice, practice, practice!

Learning the Linux command line, like becoming an accomplished
pianist, is not something that we pick up in an afternoon. It takes years of
practice. In this chapter, we will introduce the vi (pronounced “vee eye”)
text editor, one of the core programs in the Unix tradition. vi is somewhat
notorious for its difficult user interface, but when we see a master sit down
at the keyboard and begin to “play,” we will indeed be witness to some great
art. We won’t become masters in this chapter, but when we are done, we will
know how to play “Chopsticks” in vi.

www.it-ebooks.info

http://www.it-ebooks.info/

Why We Should Learn vi
In this modern age of graphical editors and easy-to-use text-based editors
such as nano, why should we learn vi? There are three good reasons:

vi is always available. This can be a lifesaver if we have a system with
no graphical interface, such as a remote server or a local system with a
broken X configuration. nano, while increasingly popular, is still not uni-
versal. POSIX, a standard for program compatibility on Unix systems,
requires that vi be present.

vi is lightweight and fast. For many tasks, it’s easier to bring up vi than it
is to find the graphical text editor in the menus and wait for its multiple
megabytes to load. In addition, vi is designed for typing speed. As we
shall see, a skilled vi user never has to lift his or her fingers from the
keyboard while editing.

We don’t want other Linux and Unix users to think we are sissies.

Okay, maybe two good reasons.

A Little Background
The first version of vi was written in 1976 by Bill Joy, a University of Califor-
nia, Berkeley student who later went on to co-found Sun Microsystems. vi
derives its name from the word visual, because it was intended to allow edit-
ing on a video terminal with a moving cursor. Before visual editors there
were line editors, which operated on a single line of text at a time. To specify
a change, we tell a line editor to go to a particular line and describe what
change to make, such as adding or deleting text. With the advent of video
terminals (rather than printer-based terminals like teletypes), visual editing
became possible. vi actually incorporates a powerful line editor called ex,
and we can use line-editing commands while using vi.

Most Linux distributions don’t include real vi; rather, they ship with an
enhanced replacement called vim (which is short for Vi IMproved) written by
Bram Moolenaar. vim is a substantial improvement over traditional Unix vi
and is usually symbolically linked (or aliased) to the name vi on Linux sys-
tems. In the discussions that follow, we will assume that we have a program
called vi that is really vim.

Starting and Stopping vi
To start vi, we simply enter the following:

[me@linuxbox ~]$ vi

122 Chapter 12

www.it-ebooks.info

http://www.it-ebooks.info/

A screen like this should appear:

~
~
~ VIM - Vi Improved
~
~ version 7.1.138
~ by Bram Moolenaar et al.
~ Vim is open source and freely distributable
~
~ Sponsor Vim development!
~ type :help sponsor<Enter> for information
~
~ type :q<Enter> to exit
~ type :help<Enter> or <F1> for on-line help
~ type :help version7<Enter> for version info
~
~ Running in Vi compatible mode
~ type :set nocp<Enter> for Vim defaults
~ type :help cp-default<Enter> for info on this
~
~
~

Just as we did with nano earlier, the first thing to learn is how to exit. To
exit, we enter the following command (note that the colon character is part
of the command):

:q

The shell prompt should return. If, for some reason, vi will not quit
(usually because we made a change to a file that has not yet been saved),
we can tell vi that we really mean it by adding an exclamation point to the
command:

:q!

Note: If you get “lost” in vi, try pressing the ESC key twice to find your way again.

Editing Modes
Let’s start up vi again, this time passing to it the name of a nonexistent file.
This is how we can create a new file with vi:

[me@linuxbox ~]$ rm -f foo.txt
[me@linuxbox ~]$ vi foo.txt

A Gentle Introduction to vi 123
www.it-ebooks.info

http://www.it-ebooks.info/

If all goes well, we should get a screen like this:

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
"foo.txt" [New File]

The leading tilde characters (~) indicate that no text exists on that line.
This shows that we have an empty file. Do not type anything yet!

The second most important thing to learn about vi (after learning how
to exit) is that vi is a modal editor. When vi starts up, it begins in command
mode. In this mode, almost every key is a command, so if we were to start typ-
ing, vi would basically go crazy and make a big mess.

Entering Insert Mode
In order to add some text to our file, we must first enter insert mode. To do
this, we press the I key (i). Afterward, we should see the following at the bot-
tom of the screen if vim is running in its usual enhanced mode (this will not
appear in vi-compatible mode):

-- INSERT --

Now we can enter some text. Try this:

The quick brown fox jumped over the lazy dog.

To exit insert mode and return to command mode, press the ESC key.

Saving Our Work
To save the change we just made to our file, we must enter an ex command
while in command mode. This is easily done by pressing the : key. After
doing this, a colon character should appear at the bottom of the screen:

:

124 Chapter 12

www.it-ebooks.info

http://www.it-ebooks.info/

To write our modified file, we follow the colon with a w, then ENTER:

:w

The file will be written to the hard drive, and we should get a confirma-
tion message at the bottom of the screen, like this:

"foo.txt" [New] 1L, 46C written

Note: If you read the vim documentation, you will notice that (confusingly) command mode
is called normal mode and ex commands are called command mode. Beware.

C O M P A T I B I L I T Y M O D E

In the example startup screen shown at the beginning of this section (taken
from Ubuntu 8.04), we see the text Running in Vi compatible mode. This means
that vim will run in a mode that is closer to the normal behavior of vi rather
than the enhanced behavior of vim. For purposes of this chapter, we will want
to run vim with its enhanced behavior. To do this, you have a couple of options:

Try running vim instead of vi (if that works, consider adding alias vi='vim'
to your .bashrc file).

Use this command to add a line to your vim configuration file:

echo "set nocp" >> ~/.vimrc

Different Linux distributions package vim in different ways. Some distribu-
tions install a minimal version of vim by default that supports only a limited set
of vim features. While performing the lessons that follow, you may encounter
missing features. If this is the case, install the full version of vim.

Moving the Cursor Around
While it is in command mode, vi offers a large number of movement com-
mands, some of which it shares with less. Table 12-1 lists a subset.

Table 12-1: Cursor Movement Keys

Key Moves the cursor

L or right arrow Right one character

H or left arrow Left one character

J or down arrow Down one line

K or up arrow Up one line

A Gentle Introduction to vi 125

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Table 12-1 (continued)

Key Moves the cursor

0 (zero) To the beginning of the current line

SHIFT-6 (^) To the first non-whitespace character on the current line

SHIFT-4 ($) To the end of the current line

W To the beginning of the next word or punctuation
character

SHIFT-W (W) To the beginning of the next word, ignoring punctu
ation characters

B To the beginning of the previous word or punctuation
character

SHIFT-B (B) To the beginning of the previous word, ignoring
punctuation characters

CTRL-F or PAGE DOWN Down one page

CTRL-B or PAGE UP Up one page

number-SHIFT-G To line number (for example, 1G moves to the first line
of the file)

SHIFT-G (G) To the last line of the file

Why are the H, J, K, and L keys used for cursor movement? Because
when vi was originally written, not all video terminals had arrow keys, and
skilled typists could use regular keyboard keys to move the cursor without
ever having to lift their fingers from the keyboard.

Many commands in vi can be prefixed with a number, as with the G
command listed in Table 12-1. By prefixing a command with a number,
we may specify the number of times a command is to be carried out. For
example, the command 5j causes vi to move the cursor down five lines.

Basic Editing
Most editing consists of a few basic operations such as inserting text, delet-
ing text, and moving text around by cutting and pasting. vi, of course, sup-
ports all of these operations in its own unique way. vi also provides a limited
form of undo. If we press the U key while in command mode, vi will undo
the last change that you made. This will come in handy as we try out some
of the basic editing commands.

126 Chapter 12

www.it-ebooks.info

http://www.it-ebooks.info/

Appending Text
vi has several ways of entering insert mode. We have already used the i com-
mand to insert text.

Let’s go back to our foo.txt file for a moment:

The quick brown fox jumped over the lazy dog.

If we wanted to add some text to the end of this sentence, we would dis-
cover that the i command will not do it, because we can’t move the cursor
beyond the end of the line. vi provides a command to append text, the sens-
ibly named a command. If we move the cursor to the end of the line and
type a, the cursor will move past the end of the line, and vi will enter insert
mode. This will allow us to add some more text:

The quick brown fox jumped over the lazy dog. It was cool.

Remember to press the ESC key to exit insert mode.
Since we will almost always want to append text to the end of a line, vi

offers a shortcut to move to the end of the current line and start appending.
It’s the A command. Let’s try it and add some more lines to our file.

First, we’ll move the cursor to the beginning of the line using the 0
(zero) command. Now we type A and add the following lines of text:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Again, press the ESC key to exit insert mode.
As we can see, the A command is more useful because it moves the

cursor to the end of the line before starting insert mode.

Opening a Line
Another way we can insert text is by “opening” a line. This inserts a blank
line between two existing lines and enters insert mode. This has two
variants, as shown in Table 12-2.

Table 12-2: Line Opening Keys

Command Opens
o The line below the current line

O The line above the current line

A Gentle Introduction to vi 127
www.it-ebooks.info

http://www.it-ebooks.info/

We can demonstrate this as follows: Place the cursor on Line 3 and then
type o.

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3

Line 4
Line 5

A new line was opened below the third line, and we entered insert
mode. Exit insert mode by pressing the ESC key. Type u to undo our change.

Type O to open the line above the cursor:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2

Line 3
Line 4
Line 5

Exit insert mode by pressing the ESC key and undo our change by
typing u.

Deleting Text
As we might expect, vi offers a variety of ways to delete text, all of which
contain one of two keystrokes. First, the X key will delete a character at the
cursor location. x may be preceded by a number specifying how many char-
acters are to be deleted. The D key is more general purpose. Like x, it may
be preceded by a number specifying the number of times the deletion is
to be performed. In addition, d is always followed by a movement command
that controls the size of the deletion. Table 12-3 lists some examples.

Place the cursor on the word It on the first line of our text. Type x
repeatedly until the rest of the sentence is deleted. Next, type u repeatedly
until the deletion is undone.

Note: Real vi supports only a single level of undo. vim supports multiple levels.

Table 12-3: Text Deletion Commands

Command Deletes
x The current character

3x The current character and the next two characters

dd The current line

5dd The current line and the next four lines

128 Chapter 12

www.it-ebooks.info

http://www.it-ebooks.info/

Table 12-3 (continued)

Command Deletes
dW From the current cursor location to the beginning of the

next word

d$ From the current cursor location to the end of the current line

d0 From the current cursor location to the beginning of the line

d^ From the current cursor location to the first non-whitespace
character in the line

dG From the current line to the end of the file

d20G From the current line to the 20th line of the file

Let’s try the deletion again, this time using the d command. Again,
move the cursor to the word It and type dW to delete the word:

The quick brown fox jumped over the lazy dog. was cool.
Line 2
Line 3
Line 4
Line 5

Type d$ to delete from the cursor position to the end of the line:

The quick brown fox jumped over the lazy dog.
Line 2
Line 3
Line 4
Line 5

Type dG to delete from the current line to the end of the file:

~
~
~
~
~

Type u three times to undo the deletions.

Cutting, Copying, and Pasting Text
The d command not only deletes text, it also “cuts” text. Each time we use
the d command, the deletion is copied into a paste buffer (think clipboard)
that we can later recall with the p command to paste the contents of the buf-
fer after the cursor or with the P command to paste the contents before the
cursor.

A Gentle Introduction to vi 129
www.it-ebooks.info

http://www.it-ebooks.info/

The y command is used to “yank” (copy) text in much the same way the
d command is used to cut text. Table 12-4 lists some examples combining
the y command with various movement commands.

Table12-4: Yanking Commands

Command Copies

yy The current line

5yy The current line and the next four lines

yW From the current cursor location to the beginning of the
next word

y$ From the current cursor location to the end of the current line

y0 From the current cursor location to the beginning of the line

y^ From the current cursor location to the first non-whitespace
character in the line

yG From the current line to the end of the file

y20G From the current line to the 20th line of the file

Let’s try some copy and paste. Place the cursor on the first line of the
text and type yy to copy the current line. Next, move the cursor to the last
line (G) and type p to paste the copied line below the current line:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5
The quick brown fox jumped over the lazy dog. It was cool.

Just as before, the u command will undo our change. With the cursor
still positioned on the last line of the file, type P to paste the text above the
current line:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
The quick brown fox jumped over the lazy dog. It was cool.
Line 5

Try out some of the other y commands in Table 12-4 and get to know
the behavior of both the p and P commands. When you are done, return the
file to its original state.

130 Chapter 12

www.it-ebooks.info

http://www.it-ebooks.info/

Joining Lines
vi is rather strict about its idea of a line. Normally, it is not possible to move
the cursor to the end of a line and delete the end-of-line character to join
one line with the one below it. Because of this, vi provides a specific com-
mand, J (not to be confused with j, which is for cursor movement), to join
lines together.

If we place the cursor on line 3 and type the J command, here’s what
happens:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3 Line 4
Line 5

Search and Replace
vi has the ability to move the cursor to locations based on searches. It can
do this on either a single line or over an entire file. It can also perform text
replacements with or without confirmation from the user.

Searching Within a Line
The f command searches a line and moves the cursor to the next instance
of a specified character. For example, the command fa would move the
cursor to the next occurrence of the character a within the current line.
After performing a character search within a line, the search may be
repeated by typing a semicolon.

Searching the Entire File
To move the cursor to the next occurrence of a word or phrase, the / com-
mand is used. This works the same way as in the less program we covered in
Chapter 3. When you type the / command, a forward slash will appear at the
bottom of the screen. Next, type the word or phrase to be searched for, fol-
lowed by the ENTER key. The cursor will move to the next location contain-
ing the search string. A search may be repeated using the previous search
string with the n command. Here’s an example:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Place the cursor on the first line of the file. Type

/Line

A Gentle Introduction to vi 131
www.it-ebooks.info

http://www.it-ebooks.info/

followed by the ENTER key. The cursor will move to line 2. Next, type n,
and the cursor will move to line 3. Repeating the n command will move the
cursor down the file until it runs out of matches. While we have so far used
only words and phrases for our search patterns, vi allows the use of regular
expressions, a powerful method of expressing complex text patterns. We will
cover regular expressions in some detail in Chapter 19.

Global Search and Replace
vi uses an ex command to perform search-and-replace operations (called
substitution in vi) over a range of lines or the entire file. To change the word
Line to line for the entire file, we would enter the following command:

:%s/Line/line/g

Let’s break this command down into separate items and see what each
one does (see Table 12-5).

Table12-5: An Example of Global Search-and-Replace Syntax

Item Meaning

: The colon character starts an ex command.

% Specifies the range of lines for the operation. % is a shortcut
meaning from the first line to the last line. Alternatively, the
range could have been specified 1,5 (because our file is five
lines long), or 1,$, which means “from line 1 to the last line in
the file.” If the range of lines is omitted, the operation is
performed only on the current line.

s Specifies the operation—in this case, substitution (search and
replace).

/Line/line/ The search pattern and the replacement text.

g This means global, in the sense that the substitution is per-
formed on every instance of the search string in each line.
If g is omitted, only the first instance of the search string on
each line is replaced.

After executing our search-and-replace command, our file looks like this:

The quick brown fox jumped over the lazy dog. It was cool.
line 2
line 3
line 4
line 5

132 Chapter 12

www.it-ebooks.info

http://www.it-ebooks.info/

We can also specify a substitution command with user confirmation.
This is done by adding a c to the end of the command. For example:

:%s/line/Line/gc

This command will change our file back to its previous form; however,
before each substitution, vi stops and asks us to confirm the substitution
with this message:

replace with Line (y/n/a/q/l/^E/^Y)?

Each of the characters within the parentheses is a possible response, as
shown in Table 12-6.

Table 12-6: Replace Confirmation Keys

Key Action

y Perform the substitution.

n Skip this instance of the pattern.

a Perform the substitution on this and all subsequent
instances of the pattern.

q or ESC Quit substituting.

l Perform this substitution and then quit. Short for last.

CTRL-E, CTRL-Y Scroll down and scroll up, respectively. Useful for
viewing the context of the proposed substitution.

Editing Multiple Files
It’s often useful to edit more than one file at a time. You might need to
make changes to multiple files, or you may need to copy content from one
file into another. With vi we can open multiple files for editing by specifying
them on the command line:

vi file1 file2 file3...

Let’s exit our existing vi session and create a new file for editing. Type
:wq to exit vi, saving our modified text. Next, we’ll create an additional file
in our home directory that we can play with. We’ll create the file by captur-
ing some output from the ls command:

[me@linuxbox ~]$ ls -l /usr/bin > ls-output.txt

Let’s edit our old file and our new one with vi:

[me@linuxbox ~]$ vi foo.txt ls-output.txt

A Gentle Introduction to vi 133
www.it-ebooks.info

http://www.it-ebooks.info/

vi will start up, and we will see the first file on the screen:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Switching Between Files
To switch from one file to the next, use this ex command:

:n

To move back to the previous file, use:

:N

While we can move from one file to another, vi enforces a policy that
prevents us from switching files if the current file has unsaved changes. To
force vi to switch files and abandon your changes, add an exclamation point
(!) to the command.

In addition to the switching method described above, vim (and some
versions of vi) provides some ex commands that make multiple files easier
to manage. We can view a list of files being edited with the :buffers com-
mand. Doing so will display a list of the files at the bottom of the display:

:buffers
 1 %a "foo.txt" line 1
 2 "ls-output.txt" line 0
Press ENTER or type command to continue

To switch to another buffer (file), type :buffer followed by the number
of the buffer you wish to edit. For example, to switch from buffer 1, which
contains the file foo.txt, to buffer 2, which contains the file ls-output.txt, we
would type this:

:buffer 2

and our screen now displays the second file.

Opening Additional Files for Editing
It’s also possible to add files to our current editing session. The ex com-
mand :e (short for edit) followed by a filename will open an additional file.
Let’s end our current editing session and return to the command line.

Start vi again with just one file:

[me@linuxbox ~]$ vi foo.txt

134 Chapter 12

www.it-ebooks.info

http://www.it-ebooks.info/

To add our second file, enter:

:e ls-output.txt

and it should appear on the screen. The first file is still present, as we can
verify:

:buffers
 1 # "foo.txt" line 1
 2 %a "ls-output.txt" line 0
Press ENTER or type command to continue

Note: You cannot switch to files loaded with the :e command using either the :n or :N com-
mand. To switch files, use the :buffer command followed by the buffer number.

Copying Content from One File into Another
Often while editing multiple files, we will want to copy a portion of one file
into another file that we are editing. This is easily done using the usual yank
and paste commands we used earlier. We can demonstrate as follows. First,
using our two files, switch to buffer 1 (foo.txt) by entering

:buffer 1

This should give us the following:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Next, move the cursor to the first line and type yy to yank (copy)
the line.

Switch to the second buffer by entering

:buffer 2

The screen will now contain some file listings like this (only a portion is
shown here):

total 343700
-rwxr-xr-x 1 root root 31316 2011-12-05 08:58 [
-rwxr-xr-x 1 root root 8240 2011-12-09 13:39 411toppm
-rwxr-xr-x 1 root root 111276 2012-01-31 13:36 a2p
-rwxr-xr-x 1 root root 25368 2010-10-06 20:16 a52dec
-rwxr-xr-x 1 root root 11532 2011-05-04 17:43 aafire
-rwxr-xr-x 1 root root 7292 2011-05-04 17:43 aainfo

A Gentle Introduction to vi 135
www.it-ebooks.info

http://www.it-ebooks.info/

Move the cursor to the first line and paste the line we copied from the
preceding file by typing the p command:

total 343700
The quick brown fox jumped over the lazy dog. It was cool.
-rwxr-xr-x 1 root root 31316 2011-12-05 08:58 [
-rwxr-xr-x 1 root root 8240 2011-12-09 13:39 411toppm
-rwxr-xr-x 1 root root 111276 2012-01-31 13:36 a2p
-rwxr-xr-x 1 root root 25368 2010-10-06 20:16 a52dec
-rwxr-xr-x 1 root root 11532 2011-05-04 17:43 aafire
-rwxr-xr-x 1 root root 7292 2011-05-04 17:43 aainfo

Inserting an Entire File into Another
It’s also possible to insert an entire file into one that we are editing. To
see this in action, let’s end our vi session and start a new one with just a
single file:

[me@linuxbox ~]$ vi ls-output.txt

We will see our file listing again:

total 343700
-rwxr-xr-x 1 root root 31316 2011-12-05 08:58 [
-rwxr-xr-x 1 root root 8240 2011-12-09 13:39 411toppm
-rwxr-xr-x 1 root root 111276 2012-01-31 13:36 a2p
-rwxr-xr-x 1 root root 25368 2010-10-06 20:16 a52dec
-rwxr-xr-x 1 root root 11532 2011-05-04 17:43 aafire
-rwxr-xr-x 1 root root 7292 2011-05-04 17:43 aainfo

Move the cursor to the third line and then enter the following ex
command:

:r foo.txt

The :r command (short for read) inserts the specified file before the
cursor position. Our screen should now look like this:

total 343700
-rwxr-xr-x 1 root root 31316 2011-12-05 08:58 [
-rwxr-xr-x 1 root root 8240 2011-12-09 13:39 411toppm
The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5
-rwxr-xr-x 1 root root 111276 2012-01-31 13:36 a2p
-rwxr-xr-x 1 root root 25368 2010-10-06 20:16 a52dec
-rwxr-xr-x 1 root root 11532 2011-05-04 17:43 aafire
-rwxr-xr-x 1 root root 7292 2011-05-04 17:43 aainfo

136 Chapter 12

www.it-ebooks.info

http://www.it-ebooks.info/

Saving Our Work
Like everything else in vi, there are several ways to save our edited files. We
have already covered the ex command :w, but there are some others we may
also find helpful.

In command mode, typing ZZ will save the current file and exit vi. Like-
wise, the ex command :wq will combine the :w and :q commands into one
that will both save the file and exit.

The :w command may also specify an optional filename. This acts like a
Save As command. For example, if we were editing foo.txt and wanted to save
an alternative version called foo1.txt, we would enter the following:

:w foo1.txt

Note: While this saves the file under a new name, it does not change the name of the file you
are editing. As you continue to edit, you will still be editing foo.txt, not foo1.txt.

A Gentle Introduction to vi 137
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CUSTOMIZING T H E P R O M P T

In this chapter we will look at a seemingly trivial
detail: our shell prompt. This examination will reveal
some of the inner workings of the shell and the ter-
minal emulator program itself.

Like so many things in Linux, the shell prompt is highly configurable,
and while we have pretty much taken it for granted, the prompt is a really
useful device once we learn how to control it.

Anatomy of a Prompt
Our default prompt looks something like this:

[me@linuxbox ~]$

Notice that it contains our username, our hostname, and our current
working directory, but how did it get that way? Very simply, it turns out. The

www.it-ebooks.info

http://www.it-ebooks.info/

prompt is defined by an environment variable named PS1 (short for prompt
string 1). We can view the contents of PS1 with the echo command:

[me@linuxbox ~]$ echo $PS1
[\u@\h \W]\$

Note: Don’t worry if your results are not exactly the same as the example above. Every Linux
distribution defines the prompt string a little differently, some quite exotically.

From the results, we can see that PS1 contains a few of the characters we
see in our prompt, such as the square brackets, the @ sign, and the dollar
sign, but the rest are a mystery. The astute among us will recognize these as
backslash-escaped special characters like those we saw in Table 7-2. Table 13-1
is a partial list of the characters that the shell treats specially in the prompt
string.

Table 13-1: Escape Codes Used in Shell Prompts

Sequence Value Displayed

\a ASCII bell. This makes the computer beep when it is
encountered.

\d Current date in day, month, date format; for example,
“Mon May 26”

\h Hostname of the local machine minus the trailing domain name

\H Full hostname

\j Number of jobs running in the current shell session

\l Name of the current terminal device

\n A newline character

\r A carriage return

\s Name of the shell program

\t Current time in 24-hour, hours:minutes:seconds format

\T Current time in 12-hour format

\@ Current time in 12-hour, AM/PM format

\A Current time in 24-hour, hours:minutes format

\u Username of the current user

\v Version number of the shell

\V Version and release numbers of the shell

\w Name of the current working directory

140 Chapter 13

www.it-ebooks.info

http://www.it-ebooks.info/

Table 13-1 (continued)

Sequence Value Displayed

\W Last part of the current working directory name

\! History number of the current command

\# Number of commands entered during this shell session

\$ This displays a “$” character unless you have superuser
privileges. In that case, it displays a “#” instead.

\[This signals the start of a series of one or more non-printing
characters. It is used to embed non-printing control characters
that manipulate the terminal emulator in some way, such as
moving the cursor or changing text colors.

\] This signals the end of a non-printing character sequence.

Trying Some Alternative Prompt Designs
With this list of special characters, we can change the prompt to see the
effect. First, we’ll back up the existing string so we can restore it later. To
do this, we will copy the existing string into another shell variable that we
create ourselves:

[me@linuxbox ~]$ ps1_old="$PS1"

We create a new variable called ps1_old and assign the value of PS1 to it.
We can verify that the string has been copied by using the echo command:

[me@linuxbox ~]$ echo $ps1_old
[\u@\h \W]\$

We can restore the original prompt at any time during our terminal ses-
sion by simply reversing the process:

[me@linuxbox ~]$ PS1="$ps1_old"

Now that we are ready to proceed, let’s see what happens if we have an
empty prompt string:

[me@linuxbox ~]$ PS1=

If we assign nothing to the prompt string, we get nothing. No prompt
string at all! The prompt is still there but displays nothing, just as we asked it
to. Since this is kind of disconcerting to look at, we’ll replace it with a min-
imal prompt:

PS1="\$ "

Customizing the Prompt 141
www.it-ebooks.info

http://www.it-ebooks.info/

That’s better. At least now we can see what we are doing. Notice the
trailing space within the double quotes. This provides the space between
the dollar sign and the cursor when the prompt is displayed.

Let’s add a bell to our prompt:

$ PS1="\a\$ "

Now we should hear a beep each time the prompt is displayed. This
could get annoying, but it might be useful if we needed notification when
an especially long-running command has been executed.

Next, let’s try to make an informative prompt with some hostname and
time-of-day information:

$ PS1="\A \h \$ "
17:33 linuxbox $

Adding time-of-day to our prompt will be useful if we need to keep track
of when we perform certain tasks. Finally, we’ll make a new prompt that is
similar to our original:

17:37 linuxbox $ PS1="<\u@\h \W>\$ "
<me@linuxbox ~>$

Try out the other sequences listed in Table 13-1 and see if you can come
up with a brilliant new prompt.

Adding Color
Most terminal emulator programs respond to certain non-printing character
sequences to control such things as character attributes (like color, bold
text, and the dreaded blinking text) and cursor position. We’ll cover cursor
position in a little bit, but first we’ll look at color.

T E R M I N A L C O N F U S I O N

Back in ancient times, when terminals were hooked to remote computers,
there were many competing brands of terminals and they all worked differ-
ently. They had different keyboards, and they all had different ways of inter-
preting control information. Unix and Unix-like systems have two rather
complex subsystems (called termcap and terminfo) to deal with the babel of ter-
minal control. If you look into the deepest recesses of your terminal emulator
settings, you may find a setting for the type of terminal emulation.

In an effort to make terminals speak some sort of common language,
the American National Standards Institute (ANSI) developed a standard set
of character sequences to control video terminals. Old-time DOS users will
remember the ANSI.SYS file that was used to enable interpretation of these
codes.

142 Chapter 13

www.it-ebooks.info

http://www.it-ebooks.info/

Character color is controlled by sending the terminal emulator an ANSI
escape code embedded in the stream of characters to be displayed. The con-
trol code does not “print out” on the display; rather it is interpreted by the
terminal as an instruction. As we saw in Table 13-1, the \[and \] sequences
are used to encapsulate non-printing characters. An ANSI escape code begins
with an octal 033 (the code generated by the ESC key), followed by an optional
character attribute, followed by an instruction. For example, the code to set
the text color to normal (attribute = 0) black text is \033[0;30m.

Table 13-2 lists available text colors. Notice that the colors are divided
into two groups, differentiated by the application of the bold character
attribute (1), which creates the appearance of “light” colors.

Table13-2: Escape Sequences Used to Set Text Colors

Sequence Text Color

\033[0;30m Black

\033[0;31m Red

\033[0;32m Green

\033[0;33m Brown

\033[0;34m Blue

\033[0;35m Purple

\033[0;36m Cyan

\033[0;37m Light Gray

\033[1;30m Dark Gray

\033[1;31m Light Red

\033[1;32m Light Green

\033[1;33m Yellow

\033[1;34m Light Blue

\033[1;35m Light Purple

\033[1;36m Light Cyan

\033[1;37m White

Let’s try to make a red prompt (seen here as gray). We’ll insert the
escape code at the beginning:

<me@linuxbox ~>$ PS1="\[\033[0;31m\]<\u@\h \W>\$ "
<me@linuxbox ~>$

Customizing the Prompt 143
www.it-ebooks.info

http://www.it-ebooks.info/

That works, but notice that all the text that we type after the prompt
is also red. To fix this, we will add another escape code to the end of the
prompt that tells the terminal emulator to return to the previous color:

<me@linuxbox ~>$ PS1="\[\033[0;31m\]<\u@\h \W>\$\[\033[0m\] "
<me@linuxbox ~>$

That’s better!
It’s also possible to set the text background color using the codes listed

in Table 13-3. The background colors do not support the bold attribute.

Table 13-3: Escape Sequences Used to Set Background Color

Sequence Background Color

\033[0;40m Black

\033[0;41m Red

\033[0;42m Green

\033[0;43m Brown

\033[0;44m Blue

\033[0;45m Purple

\033[0;46m Cyan

\033[0;47m Light Gray

We can create a prompt with a red background by applying a simple
change to the first escape code:

<me@linuxbox ~>$ PS1="\[\033[0;41m\]<\u@\h \W>\$\[\033[0m\] "
<me@linuxbox ~>$

Try out the color codes and see what you can create!

Note: Besides the normal (0) and bold (1) character attributes, text may also be given under-
score (4), blinking (5), and inverse (7) attributes. In the interests of good taste, many
terminal emulators refuse to honor the blinking attribute.

Moving the Cursor
Escape codes can be used to position the cursor. This is commonly used
to provide a clock or some other kind of information at a different location
on the screen, such as an upper corner, each time the prompt is drawn.
Table 13-4 lists the escape codes that position the cursor.

144 Chapter 13

www.it-ebooks.info

http://www.it-ebooks.info/

Table 13-4: Cursor Movement Escape Sequences

Escape Code Action

\033[l;cH Move the cursor to line l and column c.

\033[nA Move the cursor up n lines.

\033[nB Move the cursor down n lines.

\033[nC Move the cursor forward n characters.

\033[nD Move the cursor backward n characters.

\033[2J Clear the screen and move the cursor to the upper-left corner
(line 0, column 0).

\033[K Clear from the cursor position to the end of the current line.

\033[s Store the current cursor position.

\033[u Recall the stored cursor position.

Using these codes, we’ll construct a prompt that draws a red bar at the
top of the screen containing a clock (rendered in yellow text) each time the
prompt is displayed. The code for the prompt is this formidable looking
string:

PS1="\[\033[s\033[0;0H\033[0;41m\033[K\033[1;33m\t\033[0m\033[u\]<\u@\h \W>\$ "

Table 13-5 takes a look at each part of the string to see what it does.

Table 13-5: Breakdown of Complex Prompt String

Sequence Action

\[Begins a non-printing character sequence. The real purpose
of this is to allow bash to correctly calculate the size of the
visible prompt. Without this, command line editing features
will improperly position the cursor.

\033[s Store the cursor position. This is needed to return to the
prompt location after the bar and clock have been drawn
at the top of the screen. Be aware that some terminal
emulators do not honor this code.

\033[0;0H Move the cursor to the upper-left corner, which is line 0,
column 0.

\033[0;41m Set the background color to red.

Customizing the Prompt 145

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Table 13-5 (continued)

Sequence Action

\033[K Clear from the current cursor location (the top-left corner)
to the end of the line. Since the background color is now
red, the line is cleared to that color, creating our bar. Note
that clearing to the end of the line does not change the
cursor position, which remains at the upper-left corner.

\033[1;33m Set the text color to yellow.

\t Display the current time. While this is a “printing” element,
we still include it in the non-printing portion of the prompt,
because we don’t want bash to include the clock when
calculating the true size of the displayed prompt.

\033[0m Turn off color. This affects both the text and the background.

\033[u Restore the cursor position saved earlier.

\] End the non-printing characters sequence.

<\u@\h \W>\$ Prompt string.

Saving the Prompt
Obviously, we don’t want to be typing that monster all the time, so we’ll
want to store our prompt someplace. We can make the prompt permanent
by adding it to our .bashrc file. To do so, add these two lines to the file:

PS1="\[\033[s\033[0;0H\033[0;41m\033[K\033[1;33m\t\033[0m\033[u\]<\u@\h \W>\$ "

export PS1

Final Note
Believe it or not, much more can be done with prompts involving shell
functions and scripts that we haven’t covered here, but this is a good start.
Not everyone will care enough to change the prompt, since the default
prompt is usually satisfactory. But for those of us who like to tinker, the
shell provides an opportunity for many hours of trivial fun.

146 Chapter 13

www.it-ebooks.info

http://www.it-ebooks.info/

