
PART 3
C O M M O N T A S K S A N D

E S S E N T I A L T O O L S

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

P A C K A G E MANAGEMENT

If we spend any time in the Linux community, we
hear many opinions as to which of the many Linux
distributions is “best.” Often, these discussions get
really silly, focusing on such things as the prettiness
of the desktop background (some people won’t use
Ubuntu because of its default color scheme!) and
other trivial matters.

The most important determinant of distribution quality is the packag-
ing system and the vitality of the distribution’s support community. As we
spend more time with Linux, we see that its software landscape is extremely
dynamic. Things are constantly changing. Most of the top-tier Linux distri-
butions release new versions every six months and many individual program
updates every day. To keep up with this blizzard of software, we need good
tools for package management.

Package management is a method of installing and maintaining software
on the system. Today, most people can satisfy all of their software needs by
installing packages from their Linux distributor. This contrasts with the early
days of Linux, when one had to download and compile source code in order

www.it-ebooks.info

http://www.it-ebooks.info/

to install software. Not that there is anything wrong with compiling source
code; in fact, having access to source code is the great wonder of Linux. It
gives us (and everybody else) the ability to examine and improve the system.
It’s just that working with a precompiled package is faster and easier.

In this chapter, we will look at some of the command-line tools used
for package management. While all of the major distributions provide
powerful and sophisticated graphical programs for maintaining the system,
it is important to learn about the command-line programs, too. They can
perform many tasks that are difficult (or impossible) to do using their
graphical counterparts.

Packaging Systems
Different distributions use different packaging systems, and as a general rule
a package intended for one distribution is not compatible with another dis-
tribution. Most distributions fall into one of two camps of packaging techno-
logies: the Debian .deb camp and the Red Hat .rpm camp. There are some
important exceptions, such as Gentoo, Slackware, and Foresight, but most
others use one of the two basic systems shown in Table 14-1.

Table 14-1: Major Packaging System Families

Packaging System Distributions (partial listing)

Debian style (.deb) Debian, Ubuntu, Xandros, Linspire

Red Hat style (.rpm) Fedora, CentOS, Red Hat Enterprise Linux, openSUSE,
Mandriva, PCLinuxOS

How a Package System Works
The method of software distribution found in the proprietary software
industry usually entails buying a piece of installation media such as an
“install disk” and then running an “installation wizard” to install a new
application on the system.

Linux doesn’t work that way. Virtually all software for a Linux system
is found on the Internet. Most of it is provided by the distribution vendor
in the form of package files, and the rest is available in source code form,
which can be installed manually. We’ll talk a little about how to install soft-
ware by compiling source code in Chapter 23.

Package Files
The basic unit of software in a packaging system is the package file. A package
file is a compressed collection of files that comprise the software package.
A package may consist of numerous programs and data files that support
the programs. In addition to the files to be installed, the package file also
includes metadata about the package, such as a text description of the

150 Chapter 14

www.it-ebooks.info

http://www.it-ebooks.info/

package and its contents. Additionally, many packages contain pre- and
post-installation scripts that perform configuration tasks before and after
the package installation.

Package files are created by a person known as a package maintainer,
often (but not always) an employee of the distribution vendor. The package
maintainer gets the software in source code form from the upstream provider
(the author of the program), compiles it, and creates the package metadata
and any necessary installation scripts. Often, the package maintainer will
apply modifications to the original source code to improve the program’s
integration with the other parts of the Linux distribution.

Repositories
While some software projects choose to perform their own packaging and
distribution, most packages today are created by the distribution vendors
and interested third parties. Packages are made available to the users of a
distribution in central repositories, which may contain many thousands of
packages, each specially built and maintained for the distribution.

A distribution may maintain several different repositories for different
stages of the software development life cycle. For example, there will usually
be a testing repository, which contains packages that have just been built and
are intended for use by brave souls who are looking for bugs before the pack-
ages are released for general distribution. A distribution will often have a
development repository where work-in-progress packages destined for inclusion
in the distribution’s next major release are kept.

A distribution may also have related third-party repositories. These
are often needed to supply software that, for legal reasons such as patents
or Digital Rights Management (DRM) anticircumvention issues, cannot
be included with the distribution. Perhaps the best-known case is that of
encrypted DVD support, which is not legal in the United States. The third-
party repositories operate in countries where software patents and anti-
circumvention laws do not apply. These repositories are usually wholly
independent of the distribution they sup-port, and to use them one must
know about them and manually include them in the configuration files for
the package management system.

Dependencies
Programs seldom stand alone; rather, they rely on the presence of other
software components to get their work done. Common activities, such as
input/output for example, are handled by routines shared by many programs.
These routines are stored in what are called shared libraries, which provide
essential services to more than one program. If a package requires a shared
resource such as a shared library, it is said to have a dependency. Modern
package management systems all provide some method of dependency resolu-
tion to ensure that when a package is installed, all of its dependencies are
installed, too.

Package Management 151
www.it-ebooks.info

http://www.it-ebooks.info/

High- and Low-Level Package Tools
Package management systems usually consist of two types of tools: low-level
tools that handle tasks such as installing and removing package files, and
high-level tools that perform metadata searching and dependency resolu-
tion. In this chapter, we will look at the tools supplied with Debian-style sys-
tems (such as Ubuntu and many others) and those used by recent Red Hat
products. While all Red Hat–style distributions rely on the same low-level
program (rpm), they use different high-level tools. For our discussion, we
will cover the high-level program yum, used by Fedora, Red Hat Enterprise
Linux, and CentOS. Other Red Hat–style distributions provide high-level
tools with comparable features (see Table 14-2).

Table14-2: Packaging System Tools

Distributions Low-Level Tools High-Level Tools

Debian style dpkg apt-get, aptitude

Fedora, Red Hat Enterprise
Linux, CentOS

rpm yum

Common Package Management Tasks
Many operations can be performed with the command-line package man-
agement tools. We will look at the most common. Be aware that the low-
level tools also support creation of package files, an activity outside the
scope of this book.

In the following discussion, the term package_name refers to the actual
name of a package, as opposed to package_file, which is the name of the file
that contains the package.

Finding a Package in a Repository
By using the high-level tools to search repository metadata, one can locate a
package based on its name or description (see Table 14-3).

Table 14-3: Package Search Commands

Style Command(s)

Debian apt-get update
apt-cache search search_string

Red Hat yum search search_string

152 Chapter 14

www.it-ebooks.info

http://www.it-ebooks.info/

Example: Search a yum repository for the emacs text editor on a Red Hat
system:

yum search emacs

Installing a Package from a Repository
High-level tools permit a package to be downloaded from a repository and
installed with full dependency resolution (see Table 14-4).

Table 14-4: Package Installation Commands

Style Command(s)

Debian apt-get update
apt-get install package_name

Red Hat yum install package_name

Example: Install the emacs text editor from an apt repository on a
Debian-style system:

apt-get update; apt-get install emacs

Installing a Package from a Package File
If a package file has been downloaded from a source other than a reposit-
ory, it can be installed directly (though without dependency resolution)
using a low-level tool (see Table 14-5).

Table 14-5: Low-Level Package Installation Commands

Style Command

Debian dpkg --install package_file

Red Hat rpm -i package_file

Example: If the emacs-22.1-7.fc7-i386.rpm package file has been down-
loaded from a non-repository site, install it on a Red Hat system this way:

rpm -i emacs-22.1-7.fc7-i386.rpm

Note: Since this technique uses the low-level rpm program to perform the installation, no
dependency resolution is performed. If rpm discovers a missing dependency, rpm will
exit with an error.

Package Management 153
www.it-ebooks.info

http://www.it-ebooks.info/

Removing a Package
Packages can be uninstalled using either the high-level or low-level tools.
The high-level tools are shown in Table 14-6.

Table14-6: Package Removal Commands

Style Command

Debian apt-get remove package_name

Red Hat yum erase package_name

Example: Uninstall the emacs package from a Debian-style system:

apt-get remove emacs

Updating Packages from a Repository
The most common package management task is keeping the system up-to-
date with the latest packages. The high-level tools can perform this vital task
in one single step (see Table 14-7).

Table 14-7: Package Update Commands

Style Command(s)

Debian apt-get update; apt-get upgrade

Red Hat yum update

Example: Apply any available updates to the installed packages on a
Debian-style system:

apt-get update; apt-get upgrade

Upgrading a Package from a Package File
If an updated version of a package has been downloaded from a non-
repository source, it can be installed, replacing the previous version (see
Table 14-8).

Table 14-8: Low-Level Package Upgrade Commands

Style Command

Debian dpkg --install package_file

Red Hat rpm -U package_file

154 Chapter 14

www.it-ebooks.info

http://www.it-ebooks.info/

Example: Update an existing installation of emacs to the version con-
tained in the package file emacs-22.1-7.fc7-i386.rpm on a Red Hat system:

rpm -U emacs-22.1-7.fc7-i386.rpm

Note: dpkg does not have a specific option for upgrading a package versus installing one, as
rpm does.

Listing Installed Packages
The commands shown in Table 14-9 can be used to display a list of all the
packages installed on the system.

Table 14-9: Package Listing Commands

Style Command

Debian dpkg --list

Red Hat rpm -qa

Determining Whether a Package Is Installed
The low-level tools shown in Table 14-10 can be used to display whether a
specified package is installed.

Table 14-10: Package Status Commands

Style Command

Debian dpkg --status package_name

Red Hat rpm -q package_name

Example: Determine whether the emacs package is installed on a Debian-
style system:

dpkg --status emacs

Displaying Information About an Installed Package
If the name of an installed package is known, the commands shown in
Table 14-11 can be used to display a description of the package.

Table 14-11: Package Information Commands

Style Command

Debian apt-cache show package_name

Red Hat yum info package_name

Package Management 155
www.it-ebooks.info

http://www.it-ebooks.info/

Example: See a description of the emacs package on a Debian-style
system:

apt-cache show emacs

Finding Which Package Installed a File
To determine which package is responsible for the installation of a particu-
lar file, the commands shown in Table 14-12 can be used.

Table 14-12: Package File Identification Commands

Style Command

Debian dpkg --search file_name

Red Hat rpm -qf file_name

Example: See which package installed the /usr/bin/vim file on a Red Hat
system:

rpm -qf /usr/bin/vim

Final Note
In the chapters that follow, we will explore many programs covering a wide
range of application areas. While most of these programs are commonly
installed by default, sometimes we may need to install additional packages.
With our newfound knowledge (and appreciation) of package management,
we should have no problem installing and managing the programs we need.

T H E L I N U X S O F T W A R E I N S T A L L A T I O N M Y T H

People migrating from other platforms sometimes fall victim to the myth that
software is somehow difficult to install under Linux and that the variety of
packaging schemes used by different distributions is a hindrance. Well, it is
a hindrance, but only to proprietary software vendors who wish to distribute
binary-only versions of their secret software.

The Linux software ecosystem is based on the idea of open source code. If
a program developer releases source code for a product, it is likely that a per-
son associated with a distribution will package the product and include it in the
repository. This method ensures that the product is well integrated into the dis-
tribution and the user is given the convenience of one-stop shopping for soft-
ware, rather than having to search for each product’s website.

Device drivers are handled in much the same way, except that instead
of being separate items in a distribution’s repository, they become part of the
Linux kernel itself. Generally speaking, there is no such thing as a “driver disk”

156 Chapter 14

www.it-ebooks.info

http://www.it-ebooks.info/

in Linux. Either the kernel supports a device or it doesn’t, and the Linux ker-
nel supports a lot of devices. Many more, in fact, than Windows does. Of course,
this is no consolation if the particular device you need is not supported. When
that happens, you need to look at the cause. A lack of driver support is usually
caused by one of three things:

The device is too new. Since many hardware vendors don’t actively support
Linux development, it falls upon a member of the Linux community to
write the kernel driver code. This takes time.

The device is too exotic. Not all distributions include every possible device
driver. Each distribution builds its own kernels, and since kernels are very
configurable (which is what makes it possible to run Linux on everything
from wristwatches to mainframes), the distribution may have overlooked
a particular device. By locating and downloading the source code for the
driver, it is possible for you (yes, you) to compile and install the driver your-
self. This process is not overly difficult, but it is rather involved. We’ll talk
about compiling software in Chapter 23.

The hardware vendor is hiding something. It has neither released source
code for a Linux driver, nor has it released the technical documentation
for somebody else to create one. This means that the hardware vendor is
trying to keep the programming interfaces to the device a secret. Since we
don’t want secret devices in our computers, I suggest that you remove the
offending hardware and pitch it into the trash with your other useless items.

Package Management 157
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

S T O R A G E M E D I A

In previous chapters we’ve looked at manipulating data
at the file level. In this chapter, we will consider data at
the device level. Linux has amazing capabilities for
handling storage devices, whether physical storage
such as hard disks, network storage, or virtual storage
devices like RAID (redundant array of independent
disks) and LVM (logical volume manager).

However, since this is not a book about system administration, we will
not try to cover this entire topic in depth. What we will do is introduce some
of the concepts and key commands that are used to manage storage devices.

To carry out the exercises in this chapter, we will use a USB flash drive,
a CD-RW disc (for systems equipped with a CD-ROM burner), and a floppy
disk (again, if the system is so equipped).

We will look at the following commands:

mount—Mount a filesystem.

umount—Unmount a filesystem.

www.it-ebooks.info

http://www.it-ebooks.info/

fdisk—Partition table manipulator.

fsck—Check and repair a filesystem.

fdformat—Format a floppy disk.

mkfs—Create a filesystem.

dd—Write block-oriented data directly to a device.

genisoimage (mkisofs)—Create an ISO 9660 image file.

wodim (cdrecord)—Write data to optical storage media.

md5sum—Calculate an MD5 checksum.

Mounting and Unmounting Storage Devices
Recent advances in the Linux desktop have made storage device manage-
ment extremely easy for desktop users. For the most part, we attach a device
to our system and it just works. Back in the old days (say, 2004), this stuff
had to be done manually. On non-desktop systems (i.e., servers) this is still
a largely manual procedure, because servers often have extreme storage
needs and complex configuration requirements.

The first step in managing a storage device is attaching the device to
the filesystem tree. This process, called mounting, allows the device to par-
ticipate with the operating system. As we recall from Chapter 2, Unix-like
operating systems, like Linux, maintain a single filesystem tree with devices
attached at various points. This contrasts with other operating systems such
as MS-DOS and Windows that maintain separate trees for each device (for
example C:\, D:\, etc.).

A file named /etc/fstab lists the devices (typically hard disk partitions)
that are to be mounted at boot time. Here is an example /etc/fstab file from
a Fedora 7 system:

LABEL=/12 / ext3 defaults 1 1
LABEL=/home /home ext3 defaults 1 2
LABEL=/boot /boot ext3 defaults 1 2
tmpfs /dev/shm tmpfs defaults 0 0
devpts /dev/pts devpts gid=5,mode=620 0 0
sysfs /sys sysfs defaults 0 0
proc /proc proc defaults 0 0
LABEL=SWAP-sda3 swap swap defaults 0 0

Most of the filesystems listed in this example file are virtual and are not
applicable to our discussion. For our purposes, the interesting ones are the
first three:

LABEL=/12 / ext3 defaults 1 1
LABEL=/home /home ext3 defaults 1 2
LABEL=/boot /boot ext3 defaults 1 2

160 Chapter 15

www.it-ebooks.info

http://www.it-ebooks.info/

These are the hard disk partitions. Each line of the file consists of six
fields, as shown in Table 15-1.

Table 15-1: /etc/fstab Fields

Field Contents Description

1 Device Traditionally, this field contains the actual name of
a device file associated with the physical device,
such as /dev/hda1 (the first partition of the master
device on the first IDE channel). But with today’s
computers, which have many devices that are hot
pluggable (like USB drives), many modern Linux
distributions associate a device with a text label
instead. This label (which is added to the storage
medium when it is formatted) is read by the oper-
ating system when the device is attached to the
system. That way, no matter which device file is
assigned to the actual physical device, it can still
be correctly identified.

2 Mount point The directory where the device is attached to the
filesystem tree

3 Filesystem type Linux allows many filesystem types to be mounted.
Most native Linux filesystems are ext3, but many
others are supported, such as FAT16 (msdos), FAT32
(vfat), NTFS (ntfs), CD-ROM (iso9660), etc.

4 Options Filesystems can be mounted with various options. It
is possible, for example, to mount filesystems as
read only or to prevent any programs from being
executed from them (a useful security feature for
removable media).

5 Frequency A single number that specifies if and when a file-
system is to be backed up with the dump command

6 Order A single number that specifies in what order file-
systems should be checked with the fsck command

Viewing a List of Mounted Filesystems
The mount command is used to mount filesystems. Entering the command
without arguments will display a list of the filesystems currently mounted:

[me@linuxbox ~]$ mount
/dev/sda2 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)

Storage Media 161
www.it-ebooks.info

http://www.it-ebooks.info/

devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/sda5 on /home type ext3 (rw)
/dev/sda1 on /boot type ext3 (rw)
tmpfs on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)
fusectl on /sys/fs/fuse/connections type fusectl (rw)
/dev/sdd1 on /media/disk type vfat (rw,nosuid,nodev,noatime,
uhelper=hal,uid=500,utf8,shortname=lower)
twin4:/musicbox on /misc/musicbox type nfs4 (rw,addr=192.168.1.4)

The format of the listing is device on mount_point type filesystem_type
(options). For example, the first line shows that device /dev/sda2 is mounted
as the root filesystem, is of type ext3, and is both readable and writable
(the option rw). This listing also has two interesting entries at the bottom.
The next-to-last entry shows a 2-gigabyte SD memory card in a card reader
mounted at /media/disk, and the last entry is a network drive mounted at
/misc/musicbox.

For our first experiment, we will work with a CD-ROM. First, let’s look at
a system before a CD-ROM is inserted:

[me@linuxbox ~]$ mount
/dev/mapper/VolGroup00-LogVol00 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/hda1 on /boot type ext3 (rw)
tmpfs on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)

This listing is from a CentOS 5 system that is using LVM to create its
root filesystem. Like many modern Linux distributions, this system will
attempt to automatically mount the CD-ROM after insertion. After we
insert the disc, we see the following:

[me@linuxbox ~]$ mount
/dev/mapper/VolGroup00-LogVol00 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/hda1 on /boot type ext3 (rw)
tmpfs on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)
/dev/hdc on /media/live-1.0.10-8 type iso9660 (ro,noexec,nosuid,nodev,uid=500)

We see the same listing as before, with one additional entry. At the end
of the listing, we see that the CD-ROM (which is device /dev/hdc on this sys-
tem) has been mounted on /media/live-1.0.10-8 and is type iso9660 (a CD-
ROM). For the purposes of our experiment, we’re interested in the name
of the device. When you conduct this experiment yourself, the device name
will most likely be different.

162 Chapter 15

www.it-ebooks.info

http://www.it-ebooks.info/

Warning: In the examples that follow, it is vitally important that you pay close attention to
the actual device names in use on your system and do not use the names used in
this text!

Also, note that audio CDs are not the same as CD-ROMs. Audio CDs do not
contain filesystems and thus cannot be mounted in the usual sense.

Now that we have the device name of the CD-ROM drive, let’s unmount
the disc and remount it at another location in the filesystem tree. To do this,
we become the superuser (using the command appropriate for our system)
and unmount the disc with the umount (notice the spelling) command:

[me@linuxbox ~]$ su -
Password:
[root@linuxbox ~]# umount /dev/hdc

The next step is to create a new mount point for the disc. A mount point
is simply a directory somewhere on the filesystem tree. Nothing special about
it. It doesn’t even have to be an empty directory, though if you mount a
device on a non-empty directory, you will not be able to see the directory’s
previous contents until you unmount the device. For our purposes, we will
create a new directory:

[root@linuxbox ~]# mkdir /mnt/cdrom

Finally, we mount the CD-ROM at the new mount point. The -t option
is used to specify the filesystem type:

[root@linuxbox ~]# mount -t iso9660 /dev/hdc /mnt/cdrom

Afterward, we can examine the contents of the CD-ROM via the new
mount point:

[root@linuxbox ~]# cd /mnt/cdrom
[root@linuxbox cdrom]# ls

Notice what happens when we try to unmount the CD-ROM:

[root@linuxbox cdrom]# umount /dev/hdc
umount: /mnt/cdrom: device is busy

Why is this? We cannot unmount a device if the device is being used by
someone or some process. In this case, we changed our working directory to
the mount point for the CD-ROM, which causes the device to be busy. We
can easily remedy the issue by changing the working directory to something
other than the mount point:

[root@linuxbox cdrom]# cd
[root@linuxbox ~]# umount /dev/hdc

Now the device unmounts successfully.

Storage Media 163
www.it-ebooks.info

http://www.it-ebooks.info/

W H Y U N M O U N T I N G I S I M P O R T A N T

If you look at the output of the free command, which displays statistics about
memory usage, you will see a statistic called buffers. Computer systems are
designed to go as fast as possible. One of the impediments to system speed
is slow devices. Printers are a good example. Even the fastest printer is extremely
slow by computer standards. A computer would be very slow indeed if it had to
stop and wait for a printer to finish printing a page. In the early days of PCs
(before multitasking), this was a real problem. If you were working on a spread-
sheet or text document, the computer would stop and become unavailable every
time you printed. The computer would send the data to the printer as fast as
the printer could accept it, but it was very slow because printers don’t print very
fast. This problem was solved by the advent of the printer buffer, a device contain-
ing some RAM memory, that would sit between the computer and the printer.
With the printer buffer in place, the computer would send the printer output
to the buffer, and it would quickly be stored in the fast RAM so the computer
could go back to work without waiting. Meanwhile, the printer buffer would
slowly spool the data to the printer from the buffer’s memory at the speed at
which the printer could accept it.

This idea of buffering is used extensively in computers to make them
faster. Don’t let the need to occasionally read or write data to or from slow
devices impede the speed of the system. Operating systems store data that has
been read from, and is to be written to, storage devices in memory for as long
as possible before actually having to interact with the slower device. On a Linux
system, for example, you will notice that the system seems to fill up memory the
longer it is used. This does not mean Linux is “using” all the memory, it means
that Linux is taking advantage of all the available memory to do as much buf-
fering as it can.

This buffering allows writing to storage devices to be done very quickly,
because the writing to the physical device is being deferred to a future time. In
the meantime, the data destined for the device is piling up in memory. From
time to time, the operating system will write this data to the physical device.

Unmounting a device entails writing all the remaining data to the device
so that it can be safely removed. If the device is removed without first being
unmounted, the possibility exists that not all the data destined for the device
has been transferred. In some cases, this data may include vital directory updates,
which will lead to filesystem corruption, one of the worst things that can happen
on a computer.

Determining Device Names
It’s sometimes difficult to determine the ameof a device. Back in the old
days, it wasn’t very hard. A device was always in the same place and didn’t
change. Unix-like systems like it that way. Back when Unix was developed,
“changing a disk drive” involved using a forklift to remove a washing

164 Chapter 15

www.it-ebooks.info

http://www.it-ebooks.info/

machine–sized device from the computer room. In recent years, the typi-
cal desktop hardware configuration has become quite dynamic, and Linux
has evolved to become more flexible than its ancestors.

In the examples above, we took advantage of the modern Linux desktop’s
ability to “automagically” mount the device and then determine the name
after the fact. But what if we are managing a server or some other environ-
ment where this does not occur? How can we figure it out?

First, let’s look at how the system names devices. If we list the contents
of the /dev directory (where all devices live), we can see that there are lots
and lots of devices:

[me@linuxbox ~]$ ls /dev

The contents of this listing reveal some patterns of device naming.
Table 15-2 lists a few.

Table 15-2: Linux Storage Device Names

Pattern Device

/dev/fd* Floppy disk drives

/dev/hd* IDE (PATA) disks on older systems. Typical motherboards
contain two IDE connectors, or channels, each with a cable
with two attachment points for drives. The first drive on
the cable is called the master device and the second is
called the slave device. The device names are ordered
such that /dev/hda refers to the master device on the first
channel, /dev/hdb is the slave device on the first channel;
/dev/hdc, the master device on the second channel, and
so on. A trailing digit indicates the partition number on the
device. For example, /dev/hda1 refers to the first partition
on the first hard drive on the system while /dev/hda refers to
the entire drive.

/dev/lp* Printers

/dev/sd* SCSI disks. On recent Linux systems, the kernel treats all
disk-like devices (including PATA/SATA hard disks, flash
drives, and USB mass storage devices such as portable music
players and digital cameras) as SCSI disks. The rest of the
naming system is similar to the older /dev/hd* naming
scheme described above.

/dev/sr* Optical drives (CD/DVD readers and burners)

In addition, we often see symbolic links such as /dev/cdrom, /dev/dvd, and
/dev/floppy, which point to the actual device files, provided as a convenience.

If you are working on a system that does not automatically mount
removable devices, you can use the following technique to determine how

Storage Media 165
www.it-ebooks.info

http://www.it-ebooks.info/

the removable device is named when it is attached. First, start a real-time
view of the /var/log/messages file (you may require superuser privileges
for this):

[me@linuxbox ~]$ sudo tail -f /var/log/messages

The last few lines of the file will be displayed and then pause. Next,
plug in the removable device. In this example, we will use a 16MB flash
drive. Almost immediately, the kernel will notice the device and probe it:

Jul 23 10:07:53 linuxbox kernel: usb 3-2: new full speed USB device using uhci_h
cd and address 2
Jul 23 10:07:53 linuxbox kernel: usb 3-2: configuration #1 chosen from 1 choice
Jul 23 10:07:53 linuxbox kernel: scsi3 : SCSI emulation for USB Mass Storage dev
ices
Jul 23 10:07:58 linuxbox kernel: scsi scan: INQUIRY result too short (5), using
36
Jul 23 10:07:58 linuxbox kernel: scsi 3:0:0:0: Direct-Access Easy Disk 1.00 PQ:
0 ANSI: 2
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] 31263 512-byte hardware secto
rs (16 MB)
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Write Protect is off
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Assuming drive cache: write t
hrough
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] 31263 512-byte hardware secto
rs (16 MB)
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Write Protect is off
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Assuming drive cache: write t
hrough
Jul 23 10:07:59 linuxbox kernel: sdb: sdb1
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Attached SCSI removable disk
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: Attached scsi generic sg3 type 0

After the display pauses again, press CTRL-C to get the prompt back. The
interesting parts of the output are the repeated references to [sdb], which
matches our expectation of a SCSI disk device name. Knowing this, two lines
become particularly illuminating:

Jul 23 10:07:59 linuxbox kernel: sdb: sdb1
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Attached SCSI removable disk

This tells us the device name is /dev/sdb for the entire device and
/dev/sdb1 for the first partition on the device. As we have seen, working
with Linux means lots of interesting detective work!

Note: Using the tail -f /var/log/messages technique is a great way to watch what the sys-
tem is doing in near realtime.

With our device name in hand, we can now mount the flash drive:

[me@linuxbox ~]$ sudo mkdir /mnt/flash
[me@linuxbox ~]$ sudo mount /dev/sdb1 /mnt/flash
[me@linuxbox ~]$ df

166 Chapter 15

www.it-ebooks.info

http://www.it-ebooks.info/

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 15115452 5186944 9775164 35% /
/dev/sda5 59631908 31777376 24776480 57% /home
/dev/sda1 147764 17277 122858 13% /boot
tmpfs 776808 0 776808 0% /dev/shm
/dev/sdb1 15560 0 15560 0% /mnt/flash

The device name will remain the same as long as it remains physically
attached to the computer and the computer is not rebooted.

Creating New Filesystems
Let’s say that we want to reformat the flash drive with a Linux native file-
system, rather than the FAT32 system it has now. This involves two steps:
first, (optionally) creating a new partition layout if the existing one is not
to our liking, and second, creating a new, empty filesystem on the drive.

Warning: In the following exercise, we are going to format a flash drive. Use a drive that con-
tains nothing you care about because it will be erased! Again, make absolutely sure
you are specifying the correct device name for your system, not the one shown in
the text. Failure to heed this warning could result in formatting (i.e., erasing) the
wrong drive!

Manipulating Partitions with fdisk
The fdisk program allows us to interact directly with disk-like devices (such
as hard disk drives and flash drives) at a very low level. With this tool we can
edit, delete, and create partitions on the device. To work with our flash drive,
we must first unmount it (if needed) and then invoke the fdisk program as
follows:

[me@linuxbox ~]$ sudo umount /dev/sdb1
[me@linuxbox ~]$ sudo fdisk /dev/sdb

Notice that we must specify the device in terms of the entire device, not
by partition number. After the program starts up, we will see the following
prompt:

Command (m for help):

Entering an m will display the program menu:

Command action
 a toggle a bootable flag
 b edit bsd disklabel
 c toggle the dos compatibility flag
 d delete a partition
 l list known partition types
 m print this menu
 n add a new partition

Storage Media 167
www.it-ebooks.info

http://www.it-ebooks.info/

 o create a new empty DOS partition table
 p print the partition table
 q quit without saving changes
 s create a new empty Sun disklabel
 t change a partition's system id
 u change display/entry units
 v verify the partition table
 w write table to disk and exit
 x extra functionality (experts only)

Command (m for help):

The first thing we want to do is examine the existing partition layout.
We do this by entering p to print the partition table for the device:

Command (m for help): p

Disk /dev/sdb: 16 MB, 16006656 bytes
1 heads, 31 sectors/track, 1008 cylinders
Units = cylinders of 31 * 512 = 15872 bytes

 Device Boot Start End Blocks Id System
/dev/sdb1 2 1008 15608+ b W95 FAT32

In this example, we see a 16MB device with a single partition (1) that
uses 1006 of the available 1008 cylinders on the device. The partition is
identified as a Windows 95 FAT32 partition. Some programs will use this
identifier to limit the kinds of operation that can be done to the disk, but
most of the time changing the identifier is not critical. However, in the
interest of demonstration, we will change it to indicate a Linux partition.
To do this, we must first find out what ID is used to identify a Linux parti-
tion. In the listing above, we see that the ID b is used to specify the existing
partition. To see a list of the available partition types, we refer back to the
program menu. There we can see the following choice:

 l list known partition types

If we enter l at the prompt, a large list of possible types is displayed.
Among them we see b for our existing partition type and 83 for Linux.

Going back to the menu, we see this choice to change a partition ID:

 t change a partition's system id

We enter t at the prompt and enter the new ID:

Command (m for help): t
Selected partition 1
Hex code (type L to list codes): 83
Changed system type of partition 1 to 83 (Linux)

168 Chapter 15

www.it-ebooks.info

http://www.it-ebooks.info/

This completes all the changes that we need to make. Up to this point,
the device has been untouched (all the changes have been stored in memory,
not on the physical device), so we will write the modified partition table to
the device and exit.

To do this, we enter w at the prompt:

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS 6.x
partitions, please see the fdisk manual page for additional
information.
Syncing disks.
[me@linuxbox ~]$

If we had decided to leave the device unaltered, we could have entered
q at the prompt, which would have exited the program without writing the
changes. We can safely ignore the ominous-sounding warning message.

Creating a New Filesystem with mkfs
With our partition editing done (lightweight though it might have been),
it’s time to create a new filesystem on our flash drive. To do this, we will use
mkfs (short for make filesystem), which can create filesystems in a variety of
formats. To create an ext3 filesystem on the device, we use the -t option to
specify the ext3 system type, followed by the name of the device containing
the partition we wish to format:

[me@linuxbox ~]$ sudo mkfs -t ext3 /dev/sdb1
mke2fs 1.40.2 (12-Jul-2012)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
3904 inodes, 15608 blocks
780 blocks (5.00%) reserved for the super user
First data block=1
Maximum filesystem blocks=15990784
2 block groups
8192 blocks per group, 8192 fragments per group
1952 inodes per group
Superblock backups stored on blocks:

8193

Writing inode tables: done
Creating journal (1024 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 34 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
[me@linuxbox ~]$

Storage Media 169
www.it-ebooks.info

http://www.it-ebooks.info/

The program will display a lot of information when ext3 is the chosen
filesystem type. To reformat the device to its original FAT32 filesystem, spe-
cify vfat as the filesystem type:

[me@linuxbox ~]$ sudo mkfs -t vfat /dev/sdb1

This process of partitioning and formatting can be used anytime addi-
tional storage devices are added to the system. While we worked with a tiny
flash drive, the same process can be applied to internal hard disks and other
removable storage devices like USB hard drives.

Testing and Repairing Filesystems
In our earlier discussion of the /etc/fstab file, we saw some mysterious digits
at the end of each line. Each time the system boots, it routinely checks the
integrity of the filesystems before mounting them. This is done by the fsck
program (short for filesystem check). The last number in each fstab entry spe-
cifies the order in which the devices are to be checked. In our example above,
we see that the root filesystem is checked first, followed by the home and boot
filesystems. Devices with a zero as the last digit are not routinely checked.

In addition to checking the integrity of filesystems, fsck can also repair
corrupt filesystems with varying degrees of success, depending on the amount
of damage. On Unix-like filesystems, recovered portions of files are placed
in the lost+found directory, located in the root of each filesystem.

To check our flash drive (which should be unmounted first), we could
do the following:

[me@linuxbox ~]$ sudo fsck /dev/sdb1
fsck 1.40.8 (13-Mar-2012)
e2fsck 1.40.8 (13-Mar-2012)
/dev/sdb1: clean, 11/3904 files, 1661/15608 blocks

In my experience, filesystem corruption is quite rare unless there is a
hardware problem, such as a failing disk drive. On most systems, filesystem
corruption detected at boot time will cause the system to stop and direct you
to run fsck before continuing.

W H A T T H E F S C K ?

In Unix culture, fsck is often used in place of a popular word with which it
shares three letters. This is especially appropriate, given that you will probably
be uttering the aforementioned word if you find yourself in a situation where
you are forced to run fsck.

170 Chapter 15

www.it-ebooks.info

http://www.it-ebooks.info/

Formatting Floppy Disks
For those of us still using computers old enough to be equipped with floppy-
disk drives, we can manage those devices, too. Preparing a blank floppy for
use is a two-step process. First, we perform a low-level format on the disk,
and then we create a filesystem. To accomplish the formatting, we use the
dformat program specifying the name of the floppy device (usually /dev/fd0):

[me@linuxbox ~]$ sudo fdformat /dev/fd0
Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.
Formatting ... done
Verifying ... done

Next, we apply a FAT filesystem to the disk with mkfs:

[me@linuxbox ~]$ sudo mkfs -t msdos /dev/fd0

Notice that we use the msdos filesystem type to get the older (and
smaller) style file allocation tables. After a disk is prepared, it may be
mounted like other devices.

Moving Data Directly to and from Devices
While we usually think of data on our computers as being organized into
files, it is also possible to think of the data in “raw” form. If we look at a disk
drive, for example, we see that it consists of a large number of “blocks” of
data that the operating system sees as directories and files. If we could treat
a disk drive as simply a large collection of data blocks, we could perform
useful tasks, such as cloning devices.

The dd program performs this task. It copies blocks of data from one
place to another. It uses a unique syntax (for historical reasons) and is usu-
ally used this way:

dd if=input_file of=output_file [bs=block_size [count=blocks]]

Let’s say we had two USB flash drives of the same size and we wanted
to exactly copy the first drive to the second. If we attached both drives to the
computer and they were assigned to devices /dev/sdb and /dev/sdc respect-
ively, we could copy everything on the first drive to the second drive with
the following:

dd if=/dev/sdb of=/dev/sdc

Alternatively, if only the first device were attached to the computer, we
could copy its contents to an ordinary file for later restoration or copying:

dd if=/dev/sdb of=flash_drive.img

Storage Media 171
www.it-ebooks.info

http://www.it-ebooks.info/

Warning: The dd command is very powerful. Though its name derives from data definition,
it is sometimes called destroy disk because users often mistype either the if or of
specifications. Always double-check your input and output specifications before
pressing ENTER!

Creating CD-ROM Images
Writing a recordable CD-ROM (either a CD-R or CD-RW) consists of two
steps: first, constructing an ISO image file that is the exact filesystem image of
the CD-ROM, and second, writing the image file onto the CD-ROM medium.

Creating an Image Copy of a CD-ROM
If we want to make an ISO image of an existing CD-ROM, we can use dd to
read all the data blocks off the CD-ROM and copy them to a local file. Say
we had an Ubuntu CD and we wanted to make an ISO file that we could
later use to make more copies. After inserting the CD and determining its
device name (we’ll assume /dev/cdrom), we can make the ISO file like so:

dd if=/dev/cdrom of=ubuntu.iso

This technique works for data DVDs as well, but it will not work for
audio CDs as they do not use a filesystem for storage. For audio CDs, look
at the cdrdao command.

A P R O G R A M B Y A N Y O T H E R N A M E . . .

If you look at online tutorials for creating and burning optical media like CD-
ROMs and DVDs, you will frequently encounter two programs called mkisofs
and cdrecord. These programs were part of a popular package called cdrtools
authored by Jörg Schilling. In the summer of 2006, Mr. Schilling made a
license change to a portion of the cdrtools package that, in the opinion of many
in the Linux community, created a license incompatibility with the GNU GPL.
As a result, a fork of the cdrtools project was started, which now includes replace-
ment programs for cdrecord and mkisofs named wodim and genisoimage, respectively.

Creating an Image from a Collection of Files
To create an ISO image file containing the contents of a directory, we use
the enisoimage program. To do this, we first create a directory containing all
the files we wish to include in the image and then execute the genisoimage
command to create the image file. For example, if we had created a directory
called ~/cd-rom-files and filled it with files for our CD-ROM, we could create
an image file named cd-rom.iso with the following command:

genisoimage -o cd-rom.iso -R -J ~/cd-rom-files

172 Chapter 15

www.it-ebooks.info

http://www.it-ebooks.info/

The -R option adds metadata for the Rock Ridge extensions, which allow
the use of long filenames and POSIX-style file permissions. Likewise, the -J
option enables the Joliet extensions, which permit long filenames in Windows.

Writing CD-ROM Images
After we have an image file, we can burn it onto our optical media. Most of
the commands we discuss below can be applied to both recordable CD-ROM
and DVD media.

Mounting an ISO Image Directly
There is a trick that we can use to mount an ISO image while it is still on
our hard disk and treat it as though it were already on optical media. By
adding the -o loop option to mount (along with the required -t iso9660
filesystem type), we can mount the image file as though it were a device and
attach it to the filesystem tree:

mkdir /mnt/iso_image
mount -t iso9660 -o loop image.iso /mnt/iso_image

In the example above, we created a mount point named /mnt/iso_image
and then mounted the image file image.iso at that mount point. After the
image is mounted, it can be treated just as though it were a real CD-ROM
or DVD. Remember to unmount the image when it is no longer needed.

Blanking a Rewritable CD-ROM
Rewritable CD-RW media need to be erased or blanked before being reused.
To do this, we can use wodim, specifying the device name for the CD writer
and the type of blanking to be performed. The wodim program offers several
types. The most minimal (and fastest) is the fast type:

wodim dev=/dev/cdrw blank=fast

Writing an Image
To write an image, we again use wodim, specifying the name of the optical
media writer device and the name of the image file:

wodim dev=/dev/cdrw image.iso

In addition to the device name and image file, wodim supports a very
large set of options. Two common ones are -v for verbose output and -dao,
which writes the disc in disc-at-once mode. This mode should be used if you
are preparing a disc for commercial reproduction. The default mode for
wodim is track-at-once, which is useful for recording music tracks.

Storage Media 173
www.it-ebooks.info

http://www.it-ebooks.info/

Extra Credit
It’s often useful to verify the integrity of an ISO image that we have down-
loaded. In most cases, a distributor of an ISO image will also supply a check-
sum file. A checksum is the result of an exotic mathematical calculation
resulting in a number that represents the content of the target file. If the
contents of the file change by even one bit, the resulting checksum will be
much different. The most common method of checksum generation uses
the md5sum program. When you use md5sum, it produces a unique hexadecimal
number:

md5sum image.iso
34e354760f9bb7fbf85c96f6a3f94ece image.iso

After you download an image, you should run md5sum against it and com-
pare the results with the md5sum value supplied by the publisher.

In addition to checking the integrity of a downloaded file, we can use
md5sum to verify newly written optical media. To do this, we first calculate the
checksum of the image file and then calculate a checksum for the medium.
The trick to verifying the medium is to limit the calculation to only the por-
tion of the optical medium that contains the image. We do this by determin-
ing the number of 2048-byte blocks the image contains (optical media is
always written in 2048-byte blocks) and reading that many blocks from the
medium. On some types of media, this is not required. A CD-R written in
disc-at-once mode can be checked this way:

md5sum /dev/cdrom
34e354760f9bb7fbf85c96f6a3f94ece /dev/cdrom

Many types of media, such as DVDs, require a precise calculation of
the number of blocks. In the example below, we check the integrity of the
image file dvd-image.iso and the disc in the DVD reader /dev/dvd. Can you
figure out how this works?

md5sum dvd-image.iso; dd if=/dev/dvd bs=2048 count=$(($(stat -c "%s" dvd-image
.iso) / 2048)) | md5sum

174 Chapter 15

www.it-ebooks.info

http://www.it-ebooks.info/

N E T W O R K I N G

When it comes to networking, there is probably noth-
ing that cannot be done with Linux. Linux is used
to build all sorts of networking systems and appli-
ances, including firewalls, routers, name servers, NAS
(network-attached storage) boxes, and on and on.

Just as the subject of networking is vast, so is the number of commands
that can be used to configure and control it. We will focus our attention on
just a few of the most frequently used ones. The commands chosen for exam-
ination include those used to monitor networks and those used to transfer
files. In addition, we are going to explore the ssh program, which is used to
perform remote logins. This chapter will cover the following:

ping—Send an ICMP ECHO_REQUEST to network hosts.

traceroute—Print the route packets trace to a network host.

netstat—Print network connections, routing tables, interface statis-
tics, masquerade connections, and multicast memberships.

ftp—Internet file transfer program.

www.it-ebooks.info

http://www.it-ebooks.info/

lftp—An improved Internet file transfer program.

wget—Non-interactive network downloader.

ssh—OpenSSH SSH client (remote login program).

scp—Secure copy (remote file copy program).

sftp—Secure file transfer program.

We’re going to assume a little background in networking. In this, the
Internet age, everyone using a computer needs a basic understanding of
networking concepts. To make full use of this chapter, you should be famil-
iar with the following terms:

IP (Internet protocol) address

Host and domain name

URI (uniform resource identifier)

Note: Some of the commands we will cover may (depending on your distribution) require the
installation of additional packages from your distribution’s repositories, and some
may require superuser privileges to execute.

Examining and Monitoring a Network
Even if you’re not the system administrator, it’s often helpful to examine
the performance and operation of a network.

ping—Send a Special Packet to a Network Host
The most basic network command is ping. The ping command sends a spe-
cial network packet called an IMCP ECHO_REQUEST to a specified host.
Most network devices receiving this packet will reply to it, allowing the net-
work connection to be verified.

Note: It is possible to configure most network devices (including Linux hosts) to ignore these
packets. This is usually done for security reasons, to partially obscure a host from a
potential attacker. It is also common for firewalls to be configured to block IMCP
traffic.

For example, to see if we can reach http://www.linuxcommand.org/ (one
of my favorite sites ;-)), we can use ping like this:

[me@linuxbox ~]$ ping linuxcommand.org

Once started, ping continues to send packets at a specified interval
(default is 1 second) until it is interrupted:

[me@linuxbox ~]$ ping linuxcommand.org
PING linuxcommand.org (66.35.250.210) 56(84) bytes of data.

176 Chapter 16

www.it-ebooks.info

http://www.it-ebooks.info/

64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=1 ttl=43 time=10
7 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=2 ttl=43 time=10
8 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=3 ttl=43 time=10
6 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=4 ttl=43 time=10
6 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=5 ttl=43 time=10
5 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=6 ttl=43 time=10
7 ms

--- linuxcommand.org ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 6010ms
rtt min/avg/max/mdev = 105.647/107.052/108.118/0.824 ms

After it is interrupted (in this case after the sixth packet) by the pressing
of CTRL-C, ping prints performance statistics. A properly performing network
will exhibit zero percent packet loss. A successful ping will indicate that the
elements of the network (its interface cards, cabling, routing, and gateways)
are in generally good working order.

traceroute—Trace the Path of a Network Packet
The traceroute program (some systems use the similar tracepath program
instead) displays a listing of all the “hops” network traffic takes to get from
the local system to a specified host. For example, to see the route taken to
reach http://www.slashdot.org/, we would do this:

[me@linuxbox ~]$ traceroute slashdot.org

The output looks like this:

traceroute to slashdot.org (216.34.181.45), 30 hops max, 40 byte packets
 1 ipcop.localdomain (192.168.1.1) 1.066 ms 1.366 ms 1.720 ms
 2 * * *
 3 ge-4-13-ur01.rockville.md.bad.comcast.net (68.87.130.9) 14.622 ms 14.885
ms 15.169 ms
 4 po-30-ur02.rockville.md.bad.comcast.net (68.87.129.154) 17.634 ms 17.626
ms 17.899 ms
 5 po-60-ur03.rockville.md.bad.comcast.net (68.87.129.158) 15.992 ms 15.983
ms 16.256 ms
 6 po-30-ar01.howardcounty.md.bad.comcast.net (68.87.136.5) 22.835 ms 14.23
3 ms 14.405 ms
 7 po-10-ar02.whitemarsh.md.bad.comcast.net (68.87.129.34) 16.154 ms 13.600
ms 18.867 ms
 8 te-0-3-0-1-cr01.philadelphia.pa.ibone.comcast.net (68.86.90.77) 21.951 ms
21.073 ms 21.557 ms
 9 pos-0-8-0-0-cr01.newyork.ny.ibone.comcast.net (68.86.85.10) 22.917 ms 21
.884 ms 22.126 ms
10 204.70.144.1 (204.70.144.1) 43.110 ms 21.248 ms 21.264 ms
11 cr1-pos-0-7-3-1.newyork.savvis.net (204.70.195.93) 21.857 ms cr2-pos-0-0-
3-1.newyork.savvis.net (204.70.204.238) 19.556 ms cr1-pos-0-7-3-1.newyork.sav
vis.net (204.70.195.93) 19.634 ms

Networking 177
www.it-ebooks.info

http://www.it-ebooks.info/

12 cr2-pos-0-7-3-0.chicago.savvis.net (204.70.192.109) 41.586 ms 42.843 ms
cr2-tengig-0-0-2-0.chicago.savvis.net (204.70.196.242) 43.115 ms
13 hr2-tengigabitethernet-12-1.elkgrovech3.savvis.net (204.70.195.122) 44.21
5 ms 41.833 ms 45.658 ms
14 csr1-ve241.elkgrovech3.savvis.net (216.64.194.42) 46.840 ms 43.372 ms 4
7.041 ms
15 64.27.160.194 (64.27.160.194) 56.137 ms 55.887 ms 52.810 ms
16 slashdot.org (216.34.181.45) 42.727 ms 42.016 ms 41.437 ms

In the output, we can see that connecting from our test system to http://
www.slashdot.org/ requires traversing 16 routers. For routers that provide
identifying information, we see their hostnames, IP addresses, and perform-
ance data, which include three samples of round-trip time from the local
system to the router. For routers that do not provide identifying information
(because of router configuration, network congestion, firewalls, etc.), we see
asterisks as in the line for hop number two.

netstat—Examine Network Settings and Statistics
The netstat program is used to examine various network settings and statis-
tics. Through the use of its many options, we can look at a variety of features
in our network setup. Using the -ie option, we can examine the network
interfaces in our system:

[me@linuxbox ~]$ netstat -ie
eth0 Link encap:Ethernet HWaddr 00:1d:09:9b:99:67
 inet addr:192.168.1.2 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::21d:9ff:fe9b:9967/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:238488 errors:0 dropped:0 overruns:0 frame:0
 TX packets:403217 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:153098921 (146.0 MB) TX bytes:261035246 (248.9 MB)
 Memory:fdfc0000-fdfe0000

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:2208 errors:0 dropped:0 overruns:0 frame:0
 TX packets:2208 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:111490 (108.8 KB) TX bytes:111490 (108.8 KB)

In the example above, we see that our test system has two network inter-
faces. The first, called eth0, is the Ethernet interface; the second, called lo, is
the loopback interface, a virtual interface that the system uses to “talk to itself.”

When performing causal network diagnostics, the important things to
look for are the presence of the word UP at the beginning of the fourth line
for each interface, indicating that the network interface is enabled, and the
presence of a valid IP address in the inet addr field on the second line. For
systems using Dynamic Host Configuration Protocol (DHCP), a valid IP
address in this field will verify that the DHCP is working.

178 Chapter 16

www.it-ebooks.info

http://www.it-ebooks.info/

Using the -r option will display the kernel’s network routing table.
This shows how the network is configured to send packets from network
to network:

[me@linuxbox ~]$ netstat -r
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.1.0 * 255.255.255.0 U 0 0 0 eth0 default
192.168.1.1 0.0.0.0 UG 0 0 0 eth0

In this simple example, we see a typical routing table for a client machine
on a local area network (LAN) behind a firewall/router. The first line of the
listing shows the destination 192.168.1.0. IP addresses that end in zero refer
to networks rather than individual hosts, so this destination means any host
on the LAN. The next field, Gateway, is the name or IP address of the gateway
(router) used to go from the current host to the destination network. An
asterisk in this field indicates that no gateway is needed.

The last line contains the destination default. This means any traffic
destined for a network that is not otherwise listed in the table. In our example,
we see that the gateway is defined as a router with the address of 192.168.1.1,
which presumably knows what to do with the destination traffic.

The netstat program has many options, and we have looked at only a
couple. Check out the netstat man page for a complete list.

Transporting Files over a Network
What good is a network unless we know how to move files across it? There
are many programs that move data over networks. We will cover two of them
now and several more in later sections.

ftp—Transfer Files with the File Transfer Protocol
One of the true “classic” programs, ftp gets its name from the protocol it
uses, the File Transfer Protocol. FTP is used widely on the Internet for file
downloads. Most, if not all, web browsers support it, and you often see URIs
starting with the protocol ftp://.

Before there were web browsers, there was the ftp program. ftp is used
to communicate with FTP servers, machines that contain files that can be
uploaded and downloaded over a network.

FTP (in its original form) is not secure, because it sends account names
and passwords in cleartext. This means that they are not encrypted and any-
one sniffing the network can see them. Because of this, almost all FTP done
over the Internet is done by anonymous FTP servers. An anonymous server
allows anyone to log in using the login name anonymous and a meaningless
password.

In the following example, we show a typical session with the ftp pro-
gram downloading an Ubuntu ISO image located in the /pub/cd_images/
Ubuntu-8.04 directory of the anonymous FTP server fileserver.

Networking 179
www.it-ebooks.info

http://www.it-ebooks.info/

[me@linuxbox ~]$ ftp fileserver
Connected to fileserver.localdomain.
220 (vsFTPd 2.0.1)
Name (fileserver:me): anonymous
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd pub/cd_images/Ubuntu-8.04
250 Directory successfully changed.
ftp> ls
200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.
-rw-rw-r-- 1 500 500 733079552 Apr 25 03:53 ubuntu-8.04-desktop-
i386.iso
226 Directory send OK.
ftp> lcd Desktop
Local directory now /home/me/Desktop
ftp> get ubuntu-8.04-desktop-i386.iso
local: ubuntu-8.04-desktop-i386.iso remote: ubuntu-8.04-desktop-i386.iso
200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection for ubuntu-8.04-desktop-i386.iso
(733079552 bytes).
226 File send OK.
733079552 bytes received in 68.56 secs (10441.5 kB/s)
ftp> bye

Table 16-1 gives an explanation of the commands entered during this
session.

Table 16-1: Examples of Interactive ftp Commands

Command Meaning
ftp fileserver Invoke the ftp program and have it

connect to the FTP server fileserver.

anonymous Login name. After the login prompt, a
password prompt will appear. Some
servers will accept a blank password.
Others will require a password in the
form of an email address. In that case,
try something like user@example.com.

cd pub/cd_images/Ubuntu-8.04 Change to the directory on the remote
system containing the desired file. Note
that on most anonymous FTP servers, the
files for public downloading are found
somewhere under the pub directory.

ls List the directory on the remote system.

180 Chapter 16

www.it-ebooks.info

http://www.it-ebooks.info/

Table 16-1 (continued)

Command Meaning
lcd Desktop Change the directory on the local

system to ~/Desktop. In the example,
the ftp program was invoked when the
working directory was ~. This command
changes the working directory to
~/Desktop.

get ubuntu-8.04-desktop-i386.iso Tell the remote system to transfer the
file ubuntu-8.04-desktop-i386.iso to
the local system. Since the working
directory on the local system was
changed to ~/Desktop, the file will
be downloaded there.

bye Log off the remote server and end the
ftp program session. The commands
quit and exit may also be used.

Typing help at the ftp> prompt will display a list of the supported com-
mands. Using ftp on a server where sufficient permissions have been granted,
it is possible to perform many ordinary file management tasks. It’s clumsy,
but it does work.

lftp—A Better ftp
ftp is not the only command-line FTP client. In fact, there are many. One of
the better (and more popular) ones is lftp by Alexander Lukyanov. It works
much like the traditional ftp program but has many additional convenience
features, including multiple-protocol support (including HTTP), automatic
retry on failed downloads, background processes, tab completion of path-
names, and many more.

wget—Non-interactive Network Downloader
Another popular command-line program for file downloading is wget. It is
useful for downloading content from both web and FTP sites. Single files,
multiple files, and even entire sites can be downloaded. To download the
first page of http://www.linuxcommand.org/, we could do this:

[me@linuxbox ~]$ wget http://linuxcommand.org/index.php
--11:02:51-- http://linuxcommand.org/index.php
 => `index.php'
Resolving linuxcommand.org... 66.35.250.210
Connecting to linuxcommand.org|66.35.250.210|:80... connected.

Networking 181
www.it-ebooks.info

http://www.it-ebooks.info/

HTTP request sent, awaiting response... 200 OK
Length: unspecified [text/html]

 [<=>] 3,120 --.--K/s

11:02:51 (161.75 MB/s) - `index.php' saved [3120]

The program’s many options allow wget to recursively download, down-
load files in the background (allowing you to log off but continue down-
loading), and complete the download of a partially downloaded file. These
features are well documented in its better-than-average man page.

Secure Communication with Remote Hosts
For many years, Unix-like operating systems have had the ability to be
administered remotely via a network. In the early days, before the general
adoption of the Internet, there were a couple of popular programs used to
log in to remote hosts: the rlogin and telnet programs. These programs,
however, suffer from the same fatal flaw that the ftp program does; they
transmit all their communications (including login names and passwords) in
cleartext. This makes them wholly inappropriate for use in the Internet age.

ssh—Securely Log in to Remote Computers
To address this problem, a new protocol called SSH (Secure Shell) was
developed. SSH solves the two basic problems of secure communication
with a remote host. First, it authenticates that the remote host is who it says
it is (thus preventing man-in-the-middle attacks), and second, it encrypts all
of the communications between the local and remote hosts.

SSH consists of two parts. An SSH server runs on the remote host, listen-
ing for incoming connections on port 22, while an SSH client is used on the
local system to communicate with the remote server.

Most Linux distributions ship an implementation of SSH called OpenSSH
from the BSD project. Some distributions include both the client and the
server packages by default (for example, Red Hat), while others (such as
Ubuntu) supply only the client. To enable a system to receive remote con-
nections, it must have the OpenSSH-server package installed, configured, and
running, and (if the system is either running or behind a firewall) it must
allow incoming network connections on TCP port 22.

Note: If you don’t have a remote system to connect to but want to try these examples, make
sure the OpenSSH-server package is installed on your system and use localhost as the
name of the remote host. That way, your machine will create network connections with
itself.

182 Chapter 16

www.it-ebooks.info

http://www.it-ebooks.info/

The SSH client program used to connect to remote SSH servers is
called, appropriately enough, ssh. To connect to a remote host named
remote-sys, we would use the ssh client program like so:

[me@linuxbox ~]$ ssh remote-sys
The authenticity of host 'remote-sys (192.168.1.4)' can't be established.
RSA key fingerprint is 41:ed:7a:df:23:19:bf:3c:a5:17:bc:61:b3:7f:d9:bb.
Are you sure you want to continue connecting (yes/no)?

The first time the connection is attempted, a message is displayed indi-
cating that the authenticity of the remote host cannot be established. This
is because the client program has never seen this remote host before. To
accept the credentials of the remote host, enter yes when prompted. Once
the connection is established, the user is prompted for a password:

Warning: Permanently added 'remote-sys,192.168.1.4' (RSA) to the list of known
hosts.
me@remote-sys's password:

After the password is successfully entered, we receive the shell prompt
from the remote system:

Last login: Tue Aug 30 13:00:48 2011
[me@remote-sys ~]$

The remote shell session continues until the user enters the exit com-
mand at the remote shell prompt, thereby closing the remote connection.
At this point, the local shell session resumes, and the local shell prompt
reappears.

It is also possible to connect to remote systems using a different user-
name. For example, if the local user me had an account named bob on a
remote system, user me could log in to the account bob on the remote system
as follows:

[me@linuxbox ~]$ ssh bob@remote-sys
bob@remote-sys's password:
Last login: Tue Aug 30 13:03:21 2011
[bob@remote-sys ~]$

As stated before, ssh verifies the authenticity of the remote host. If
the remote host does not successfully authenticate, the following message
appears:

[me@linuxbox ~]$ ssh remote-sys
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.

Networking 183
www.it-ebooks.info

http://www.it-ebooks.info/

The fingerprint for the RSA key sent by the remote host is
41:ed:7a:df:23:19:bf:3c:a5:17:bc:61:b3:7f:d9:bb.
Please contact your system administrator.
Add correct host key in /home/me/.ssh/known_hosts to get rid of this message.
Offending key in /home/me/.ssh/known_hosts:1
RSA host key for remote-sys has changed and you have requested strict
checking.
Host key verification failed.

This message is caused by one of two possible situations. First, an attacker
may be attempting a man-in-the-middle attack. This is rare, because every-
body knows that ssh alerts the user to this. The more likely culprit is that
the remote system has been changed somehow; for example, its operating
system or SSH server has been reinstalled. In the interests of security and
safety, however, the first possibility should not be dismissed out of hand.
Always check with the administrator of the remote system when this message
occurs.

After determining that the message is due to a benign cause, it is safe to
correct the problem on the client side. This is done by using a text editor
(vim perhaps) to remove the obsolete key from the ~/.ssh/known_hosts file.
In the example message above, we see this:

Offending key in /home/me/.ssh/known_hosts:1

This means that line 1 of the known_hosts file contains the offending
key. Delete this line from the file, and the ssh program will be able to accept
new authentication credentials from the remote system.

Besides opening a shell session on a remote system, ssh also allows us to
execute a single command on a remote system. For example, we can execute
the free command on a remote host named remote-sys and have the results
displayed on the local system:

[me@linuxbox ~]$ ssh remote-sys free
me@twin4's password:
 total used free shared buffers cached
Mem: 775536 507184 268352 0 110068 154596
-/+ buffers/cache: 242520 533016
Swap: 1572856 0 1572856
[me@linuxbox ~]$

It’s possible to use this technique in more interesting ways, such as this
example in which we perform an ls on the remote system and redirect the
output to a file on the local system:

[me@linuxbox ~]$ ssh remote-sys 'ls *' > dirlist.txt
me@twin4's password:
[me@linuxbox ~]$

Notice the use of the single quotes. This is done because we do not want
the pathname expansion performed on the local machine; rather, we want it
to be performed on the remote system. Likewise, if we had wanted the output

184 Chapter 16

www.it-ebooks.info

http://www.it-ebooks.info/

redirected to a file on the remote machine, we could have placed the redir-
ection operator and the filename within the single quotes:

[me@linuxbox ~]$ ssh remote-sys 'ls * > dirlist.txt'

T U N N E L I N G W I T H S S H

Part of what happens when you establish a connection with a remote host via
SSH is that an encrypted tunnel is created between the local and remote systems.
Normally, this tunnel is used to allow commands typed at the local system to be
transmitted safely to the remote system and the results to be transmitted safely
back. In addition to this basic function, the SSH protocol allows most types of
network traffic to be sent through the encrypted tunnel, creating a sort of VPN
(virtual private network) between the local and remote systems.

Perhaps the most common use of this feature is to allow X Window system
traffic to be transmitted. On a system running an X server (that is, a machine
displaying a GUI), it is possible to launch and run an X client program (a graph-
ical application) on a remote system and have its display appear on the local
system. It’s easy to do—here’s an example. Let’s say we are sitting at a Linux sys-
tem called linuxbox that is running an X server, and we want to run the xload
program on a remote system named remote-sys and see the program’s graphical
output on our local system. We could do this:

[me@linuxbox ~]$ ssh -X remote-sys
me@remote-sys's password:
Last login: Mon Sep 05 13:23:11 2011
[me@remote-sys ~]$ xload

After the xload command is executed on the remote system, its window
appears on the local system. On some systems, you may need to use the -Y
option rather than the -X option to do this.

scp and sftp—Securely Transfer Files
The OpenSSH package also includes two programs that can make use of an SSH-
encrypted tunnel to copy files across the network. The first, scp (secure copy)
is used much like the familiar cp program to copy files. The most notable
difference is that the source or destination pathname may be preceded with
the name of a remote host followed by a colon character. For example, if we
wanted to copy a document named document.txt from our home directory on
the remote system, remote-sys, to the current working directory on our local
system, we could do this:

[me@linuxbox ~]$ scp remote-sys:document.txt .
me@remote-sys's password:
document.txt 100% 5581 5.5KB/s 00:00
[me@linuxbox ~]$

Networking 185
www.it-ebooks.info

http://www.it-ebooks.info/

As with ssh, you may apply a username to the beginning of the remote
host’s name if the desired remote host account name does not match that of
the local system:

[me@linuxbox ~]$ scp bob@remote-sys:document.txt .

The second SSH file-copying program is sftp, which, as its name implies,
is a secure replacement for the ftp program. sftp works much like the ori-
ginal ftp program that we used earlier; however, instead of transmitting
everything in cleartext, it uses an SSH-encrypted tunnel. sftp has an impor-
tant advantage over conventional ftp in that it does not require an FTP
server to be running on the remote host. It requires only the SSH server.
This means that any remote machine that can connect with the SSH client
can also be used as a FTP-like server. Here is a sample session:

[me@linuxbox ~]$ sftp remote-sys
Connecting to remote-sys...
me@remote-sys's password:
sftp> ls
ubuntu-8.04-desktop-i386.iso
sftp> lcd Desktop
sftp> get ubuntu-8.04-desktop-i386.iso
Fetching /home/me/ubuntu-8.04-desktop-i386.iso to ubuntu-8.04-desktop-i386.iso

/home/me/ubuntu-8.04-desktop-i386.iso 100% 699MB 7.4MB/s 01:35
sftp> bye

Note: The SFTP protocol is supported by many of the graphical file managers found in
Linux distributions. Using either Nautilus (GNOME) or Konqueror (KDE), we can
enter a URI beginning with sftp:// into the location bar and operate on files stored
on a remote system running an SSH server.

A N S S H C L I E N T F O R W I N D O W S ?

Let’s say you are sitting at a Windows machine but you need to log in to your
Linux server and get some real work done. What do you do? Get an SSH client
program for your Windows box, of course! There are a number of these. The
most popular one is probably PuTTY by Simon Tatham and his team. The PuTTY
program displays a terminal window and allows a Windows user to open an SSH
(or telnet) session on a remote host. The program also provides analogs for the
scp and sftp programs.

PuTTY is available at http://www.chiark.greenend.org.uk/~sgtatham/putty/.

186 Chapter 16

www.it-ebooks.info

http://www.it-ebooks.info/

S E A R C H I N G F O R F I L E S

As we have wandered around our Linux system, one
thing has become abundantly clear: A typical Linux
system has a lot of files! This raises the question “How
do we find things?” We already know that the Linux
filesystem is well organized according to conventions that have been passed
down from one generation of Unix-like systems to the next, but the sheer
number of files can present a daunting problem.

In this chapter, we will look at two tools that are used to find files on a
system:

locate—Find files by name.

find—Search for files in a directory hierarchy.

We will also look at a command that is often used with file-search com-
mands to process the resulting list of files:

xargs—Build and execute command lines from standard input.

www.it-ebooks.info

http://www.it-ebooks.info/

In addition, we will introduce a couple of commands to assist us in our
explorations:

touch—Change file times.

stat—Display file or filesystem status.

locate—Find Files the Easy Way
The locate program performs a rapid database search of pathnames and
then outputs every name that matches a given substring. Say, for example,
we want to find all the programs with names that begin with zip. Since we
are looking for programs, we can assume that the name of the directory
containing the programs would end with bin/. Therefore, we could try to
use locate this way to find our files:

[me@linuxbox ~]$ locate bin/zip

locate will search its database of pathnames and output any that contain
the string bin/zip:

/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

If the search requirement is not so simple, locate can be combined with
other tools, such as grep, to design more interesting searches:

[me@linuxbox ~]$ locate zip | grep bin
/bin/bunzip2
/bin/bzip2
/bin/bzip2recover
/bin/gunzip
/bin/gzip
/usr/bin/funzip
/usr/bin/gpg-zip
/usr/bin/preunzip
/usr/bin/prezip
/usr/bin/prezip-bin
/usr/bin/unzip
/usr/bin/unzipsfx
/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

The locate program has been around for a number of years, and several
different variants are in common use. The two most common ones found in
modern Linux distributions are slocate and mlocate, though they are usually

188 Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

accessed by a symbolic link named locate. The different versions of locate
have overlapping options sets. Some versions include regular-expression
matching (which we’ll cover in Chapter 19) and wildcard support. Check
the man page for locate to determine which version of locate is installed.

W H E R E D O E S T H E L O C A T E D A T A B A S E C O M E F R O M ?

You may notice that, on some distributions, locate fails to work just after the
system is installed, but if you try again the next day, it works fine. What gives?
The locate database is created by another program named updatedb. Usually, it is
run periodically as a cron job; that is, a task performed at regular intervals by the
cron daemon. Most systems equipped with locate run updatedb once a day. Since
the database is not updated continuously, you will notice that very recent files
do not show up when using locate. To overcome this, it’s possible to run the
updatedb program manually by becoming the superuser and running updatedb
at the prompt.

find—Find Files the Hard Way
While the locate program can find a file based solely on its name, the find
program searches a given directory (and its subdirectories) for files based
on a variety of attributes. We’re going to spend a lot of time with find because
it has a bunch of interesting features that we will see again and again when
we start to cover programming concepts in later chapters.

In its simplest use, find is given one or more names of directories to
search. For example, it can produce a list of our home directory:

[me@linuxbox ~]$ find ~

On most active user accounts, this will produce a large list. Since the
list is sent to standard output, we can pipe the list into other programs. Let’s
use wc to count the number of files:

[me@linuxbox ~]$ find ~ | wc -l
47068

Wow, we’ve been busy! The beauty of find is that it can be used to
identify files that meet specific criteria. It does this through the (slightly
strange) application of tests, actions, and options. We’ll look at the tests first.

Tests
Let’s say that we want a list of directories from our search. To do this, we
could add the following test:

[me@linuxbox ~]$ find ~ -type d | wc -l
1695

Searching for Files 189
www.it-ebooks.info

http://www.it-ebooks.info/

Adding the test -type d limited the search to directories. Conversely, we
could have limited the search to regular files with this test:

[me@linuxbox ~]$ find ~ -type f | wc -l
38737

Table 17-1 lists the common file-type tests supported by find.

Table 17-1: find File Types

File Type Description

b Block special device file

c Character special device file

d Directory

f Regular file

l Symbolic link

We can also search by file size and filename by adding some additional
tests. Let’s look for all the regular files that match the wildcard pattern
*.JPG and are larger than 1 megabyte:

[me@linuxbox ~]$ find ~ -type f -name "*.JPG" -size +1M | wc -l
840

In this example, we add the -name test followed by the wildcard pattern.
Notice that we enclose it in quotes to prevent pathname expansion by the
shell. Next, we add the -size test followed by the string +1M. The leading plus
sign indicates that we are looking for files larger than the specified number.
A leading minus sign would change the string to mean “smaller than the
specified number.” Using no sign means “match the value exactly.” The
trailing letter M indicates that the unit of measurement is megabytes. The
characters shown in Table 17-2 may be used to specify units.

Table 17-2: find Size Units

Character Unit

b 512-byte blocks (the default if no unit is specified)

c Bytes

w 2-byte words

k Kilobytes (units of 1024 bytes)

M Megabytes (units of 1,048,576 bytes)

G Gigabytes (units of 1,073,741,824 bytes)

190 Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

find supports a large number of different tests. Table 17-3 provides a
rundown of the common ones. Note that in cases where a numeric argu-
ment is required, the same + and - notation discussed above can be applied.

Table 17-3: find Tests

Test Description

-cmin n Match files or directories whose content or attributes were
last modified exactly n minutes ago. To specify fewer than
n minutes ago, use -n; to specify more than n minutes ago,
use +n.

-cnewer file Match files or directories whose contents or attributes were
last modified more recently than those of file.

-ctime n Match files or directories whose contents or attributes (i.e.,
permissions) were last modified n*24 hours ago.

-empty Match empty files and directories.

-group name Match file or directories belonging to group name. name
may be expressed as either a group name or as a numeric
group ID.

-iname pattern Like the -name test but case insensitive.

-inum n Match files with inode number n. This is helpful for finding
all the hard links to a particular inode.

-mmin n Match files or directories whose contents were modified n
minutes ago.

-mtime n Match files or directories whose contents only were last
modified n*24 hours ago.

-name pattern Match files and directories with the specified wildcard
pattern.

-newer file Match files and directories whose contents were modified
more recently than the specified file. This is very useful
when writing shell scripts that perform file backups. Each
time you make a backup, update a file (such as a log) and
then use find to determine which files have changed since
the last update.

-nouser Match file and directories that do not belong to a valid
user. This can be used to find files belonging to deleted
accounts or to detect activity by attackers.

-nogroup Match files and directories that do not belong to a valid
group.

Searching for Files 191

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Table 17-3 (continued)

Test Description

-perm mode Match files or directories that have permissions set to the
specified mode. mode may be expressed by either octal or
symbolic notation.

-samefile name Similar to the -inum test. Matches files that share the same
inode number as file name.

-size n Match files of size n.

-type c Match files of type c.

-user name Match files or directories belonging to name. name may be
expressed by a username or by a numeric user ID.

This is not a complete list. The find man page has all the details.

Operators
Even with all the tests that find provides, we may still need a better way to
describe the logical relationships between the tests. For example, what if we
needed to determine if all the files and subdirectories in a directory had
secure permissions? We would look for all the files with permissions that are
not 0600 and the directories with permissions that are not 0700. Fortunately,
find provides a way to combine tests using logical operators to create more
complex logical relationships. To express the aforementioned test, we
could do this:

[me@linuxbox ~]$ find ~ \(-type f -not -perm 0600 \) -or \(-type d -not -perm
0700 \)

Yikes! That sure looks weird. What is all this stuff? Actually, the opera-
tors are not that complicated once you get to know them (see Table 17-4).

Table 17-4: find Logical Operators

Operator Description

-and Match if the tests on both sides of the operator are true. May be
shortened to -a. Note that when no operator is present, -and is
implied by default.

-or Match if a test on either side of the operator is true. May be
shortened to -o.

-not Match if the test following the operator is false. May be
shortened to -!.

192 Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

Table 17-4 (continued)

Operator Description

() Groups tests and operators together to form larger expressions.
This is used to control the precedence of the logical evaluations.
By default, find evaluates from left to right. It is often necessary
to override the default evaluation order to obtain the desired
result. Even if not needed, it is helpful sometimes to include the
grouping characters to improve readability of the command.
Note that since the parentheses characters have special meaning
to the shell, they must be quoted when using them on the command
line to allow them to be passed as arguments to find. Usually
the backslash character is used to escape them.

With this list of operators in hand, let’s deconstruct our find command.
When viewed from the uppermost level, we see that our tests are arranged as
two groupings separated by an -or operator:

(expression 1) -or (expression 2)

This makes sense, since we are searching for files with a certain set of
permissions and for directories with a different set. If we are looking for both
files and directories, why do we use -or instead of -and? Because as find scans
through the files and directories, each one is evaluated to see if it matches
the specified tests. We want to know if it is either a file with bad permissions
or a directory with bad permissions. It can’t be both at the same time. So if
we expand the grouped expressions, we can see it this way:

(file with bad perms) -or (directory with bad perms)

Our next challenge is how to test for “bad permissions.” How do we do
that? Actually we don’t. What we will test for is “not good permissions,” since
we know what “good permissions” are. In the case of files, we define good as
0600; for directories, 0700. The expression that will test files for “not good”
permissions is:

-type f -and -not -perms 0600

and the expression for directories is:

-type d -and -not -perms 0700

As noted in Table 17-4, the -and operator can be safely removed, since
it is implied by default. So if we put this all back together, we get our final
command:

find ~ (-type f -not -perms 0600) -or (-type d -not -perms 0700)

However, since the parentheses have special meaning to the shell, we
must escape them to prevent the shell from trying to interpret them. Pre-
ceding each one with a backslash character does the trick.

Searching for Files 193
www.it-ebooks.info

http://www.it-ebooks.info/

There is another feature of logical operators that is important to under-
stand. Let’s say that we have two expressions separated by a logical operator:

expr1 -operator expr2

In all cases, expr1 will always be performed; however, the operator will
determine if expr2 is performed. Table 17-5 shows how it works.

Table 17-5: find AND/OR Logic

Results of expr1 Operator expr2 is...

True -and Always performed

False -and Never performed

True -or Never performed

False -or Always performed

Why does this happen? It’s done to improve performance. Take -and,
for example. We know that the expression expr1 -and expr2 cannot be true if
the result of expr1 is false, so there is no point in performing expr2. Likewise,
if we have the expression expr1 -or expr2 and the result of expr1 is true, there
is no point in performing expr2, as we already know that the expression
expr1 -or expr2 is true.

Okay, so this helps things go faster. Why is this important? Because we
can rely on this behavior to control how actions are performed, as we shall
soon see.

Actions
Let’s get some work done! Having a list of results from our find command
is useful, but what we really want to do is act on the items on the list. Fortu-
nately, find allows actions to be performed based on the search results.

Predefined Actions
There are a set of predefined actions and several ways to apply user-defined
actions. First let’s look at a few of the predefined actions in Table 17-6.

Table 17-6: Predefined find Actions

Action Description

-delete Delete the currently matching file.

-ls Perform the equivalent of ls -dils on the matching file.
Output is sent to standard output.

-print Output the full pathname of the matching file to standard
output. This is the default action if no other action is specified.

194 Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

Table 17-6 (continued)

Action Description

-quit Quit once a match has been made.

As with the tests, there are many more actions. See the find man page
for full details.

In our very first example, we did this:

find ~

This command produced a list of every file and subdirectory contained
within our home directory. It produced a list because the -print action is
implied if no other action is specified. Thus, our command could also be
expressed as

find ~ -print

We can use find to delete files that meet certain criteria. For example, to
delete files that have the file extension .BAK (which is often used to desig-
nate backup files), we could use this command:

find ~ -type f -name '*.BAK' -delete

In this example, every file in the user’s home directory (and its sub-
directories) is searched for filenames ending in .BAK. When they are found,
they are deleted.

Warning: It should go without saying that you should use extreme caution when using
the -delete action. Always test the command first by substituting the -print action
for -delete to confirm the search results.

Before we go on, let’s take another look at how the logical operators
affect actions. Consider the following command:

find ~ -type f -name '*.BAK' -print

As we have seen, this command will look for every regular file (-type f)
whose name ends with .BAK (-name '*.BAK') and will output the relative path-
name of each matching file to standard output (-print). However, the reason
the command performs the way it does is determined by the logical relation-
ships between each of the tests and actions. Remember, there is, by default,
an implied -and relationship between each test and action. We could also
express the command this way to make the logical relationships easier to see:

find ~ -type f -and -name '*.BAK' -and -print

With our command fully expressed, let’s look at Table 17-7 to see how
the logical operators affect its execution.

Searching for Files 195
www.it-ebooks.info

http://www.it-ebooks.info/

Table 17-7: Effect of Logical Operators

Test/Action Is performed when...

-print -type f and -name '*.BAK' are true.

-name '*.BAK' -type f is true.

-type f Is always performed, since it is the first test/action in an
-and relationship.

Since the logical relationship between the tests and actions determines
which of them are performed, we can see that the order of the tests and
actions is important. For instance, if we were to reorder the tests and actions
so that the -print action was the first one, the command would behave much
differently:

find ~ -print -and -type f -and -name '*.BAK'

This version of the command will print each file (the -print action
always evaluates to true) and then test for file type and the specified file
extension.

User-Defined Actions
In addition to the predefined actions, we can also invoke arbitrary com-
mands. The traditional way of doing this is with the -exec action, like this:

-exec command {} ;

where command is the name of a command, {} is a symbolic representation
of the current pathname, and the semicolon is a required delimiter indicat-
ing the end of the command. Here’s an example of using -exec to act like
the -delete action discussed earlier:

-exec rm '{}' ';'

Again, since the brace and semicolon characters have special meaning
to the shell, they must be quoted or escaped.

It’s also possible to execute a user-defined action interactively. By using
the -ok action in place of -exec, the user is prompted before execution of
each specified command:

find ~ -type f -name 'foo*' -ok ls -l '{}' ';'
< ls ... /home/me/bin/foo > ? y
-rwxr-xr-x 1 me me 224 2011-10-29 18:44 /home/me/bin/foo
< ls ... /home/me/foo.txt > ? y
-rw-r--r-- 1 me me 0 2012-09-19 12:53 /home/me/foo.txt

In this example, we search for files with names starting with the string
foo and execute the command ls -l each time one is found. Using the -ok
action prompts the user before the ls command is executed.

196 Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Efficiency
When the -exec action is used, it launches a new instance of the specified
command each time a matching file is found. There are times when we might
prefer to combine all of the search results and launch a single instance of
the command. For example, rather than executing the commands like this,

ls -l file1
ls -l file2

we may prefer to execute them this way:

ls -l file1 file2

Here we cause the command to be executed only one time rather than
multiple times. There are two ways we can do this: the traditional way, using
the external command xargs, and the alternative way, using a new feature in
find itself. We’ll talk about the alternative way first.

By changing the trailing semicolon character to a plus sign, we activate
the ability of find to combine the results of the search into an argument
list for a single execution of the desired command. Going back to our
example,

find ~ -type f -name 'foo*' -exec ls -l '{}' ';'
-rwxr-xr-x 1 me me 224 2011-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2012-09-19 12:53 /home/me/foo.txt

will execute ls each time a matching file is found. By changing the com-
mand to

find ~ -type f -name 'foo*' -exec ls -l '{}' +
-rwxr-xr-x 1 me me 224 2011-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2012-09-19 12:53 /home/me/foo.txt

we get the same results, but the system has to execute the ls command
only once.

We can also use the xargs command to get the same result. xargs accepts
input from standard input and converts it into an argument list for a speci-
fied command. With our example, we would use it like this:

find ~ -type f -name 'foo*' -print | xargs ls -l
-rwxr-xr-x 1 me me 224 2011-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2012-09-19 12:53 /home/me/foo.txt

Here we see the output of the find command piped into xargs, which, in
turn, constructs an argument list for the ls command and then executes it.

Note: While the number of arguments that can be placed into a command line is quite large,
it’s not unlimited. It is possible to create commands that are too long for the shell to
accept. When a command line exceeds the maximum length supported by the system,
xargs executes the specified command with the maximum number of arguments pos-
sible and then repeats this process until standard input is exhausted. To see the max-
imum size of the command line, execute xargs with the --show-limits option.

Searching for Files 197
www.it-ebooks.info

http://www.it-ebooks.info/

D E A L I N G W I T H F U N N Y F I L E N A M E S
Unix-like systems allow embedded spaces (and even newlines!) in filenames.
This causes problems for programs like xargs that construct argument lists for
other programs. An embedded space will be treated as a delimiter, and the
resulting command will interpret each space-separated word as a separate
argument. To overcome this, find and xarg allow the optional use of a null char-
acter as argument separator. A null character is defined in ASCII as the charac-
ter represented by the number zero (as opposed to, for example, the space
character, which is defined in ASCII as the character represented by the num-
ber 32). The find command provides the action -print0, which produces null-
separated output, and the xargs command has the --null option, which accepts
null separated input. Here’s an example:

find ~ -iname '*.jpg' -print0 | xargs --null ls -l

Using this technique, we can ensure that all files, even those containing
embedded spaces in their names, are handled correctly.

A Return to the Playground
It’s time to put find to some (almost) practical use. First, let’s create a play-
ground with lots of subdirectories and files:

[me@linuxbox ~]$ mkdir -p playground/dir-{00{1..9},0{10..99},100}
[me@linuxbox ~]$ touch playground/dir-{00{1..9},0{10..99},100}/file-{A..Z}

Marvel in the power of the command line! With these two lines, we cre-
ated a playground directory containing 100 subdirectories, each containing
26 empty files. Try that with the GUI!

The method we employed to accomplish this magic involved a familiar
command (mkdir); an exotic shell expansion (braces); and a new command,
touch. By combining mkdir with the -p option (which causes mkdir to create
the parent directories of the specified paths) with brace expansion, we were
able to create 100 directories.

The touch command is usually used to set or update the modification
times of files. However, if a filename argument is that of a non-existent file,
an empty file is created.

In our playground, we created 100 instances of a file named file-A. Let’s
find them:

[me@linuxbox ~]$ find playground -type f -name 'file-A'

Note that unlike ls, find does not produce results in sorted order. Its
order is determined by the layout of the storage device. We can confirm that
we actually have 100 instances of the file this way:

[me@linuxbox ~]$ find playground -type f -name 'file-A' | wc -l
100

198 Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

Next, let’s look at finding files based on their modification times. This
will be helpful when creating backups or organizing files in chronological
order. To do this, we will first create a reference file against which we will
compare modification time:

[me@linuxbox ~]$ touch playground/timestamp

This creates an empty file named timestamp and sets its modification
time to the current time. We can verify this by using another handy com-
mand, stat, which is a kind of souped-up version of ls. The stat command
reveals all that the system understands about a file and its attributes:

[me@linuxbox ~]$ stat playground/timestamp
 File: `playground/timestamp'
 Size: 0 Blocks: 0 IO Block: 4096 regular empty file
Device: 803h/2051d Inode: 14265061 Links: 1
Access: (0644/-rw-r--r--) Uid: (1001/ me) Gid: (1001/ me)
Access: 2012-10-08 15:15:39.000000000 -0400
Modify: 2012-10-08 15:15:39.000000000 -0400
Change: 2012-10-08 15:15:39.000000000 -0400

If we touch the file again and then examine it with stat, we will see that
the file’s times have been updated:

[me@linuxbox ~]$ touch playground/timestamp
[me@linuxbox ~]$ stat playground/timestamp
 File: `playground/timestamp'
 Size: 0 Blocks: 0 IO Block: 4096 regular empty file
Device: 803h/2051d Inode: 14265061 Links: 1
Access: (0644/-rw-r--r--) Uid: (1001/ me) Gid: (1001/ me)
Access: 2012-10-08 15:23:33.000000000 -0400
Modify: 2012-10-08 15:23:33.000000000 -0400
Change: 2012-10-08 15:23:33.000000000 -0400

Next, let’s use find to update some of our playground files:

[me@linuxbox ~]$ find playground -type f -name 'file-B' -exec touch '{}' ';'

This updates all files in the playground that are named file-B. Next we’ll
use find to identify the updated files by comparing all the files to the refer-
ence file timestamp:

[me@linuxbox ~]$ find playground -type f -newer playground/timestamp

The results contain all 100 instances of file-B. Since we performed
a touch on all the files in the playground that are named file-B after we
updated timestamp, they are now “newer” than timestamp and thus can be
identified with the -newer test.

Finally, let’s go back to the bad permissions test we performed earlier
and apply it to playground:

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 \) -or \(-type d
-not -perm 0700 \)

Searching for Files 199
www.it-ebooks.info

http://www.it-ebooks.info/

This command lists all 100 directories and 2,600 files in playground (as
well as timestamp and playground itself, for a total of 2,702) because none of
them meets our definition of “good permissions.” With our knowledge of
operators and actions, we can add actions to this command to apply new
permissions to the files and directories in our playground:

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 -exec chmod 0600
'{}' ';' \) -or \(-type d -not -perm 0700 -exec chmod 0700 '{}' ';' \)

On a day-to-day basis, we might find it easier to issue two commands,
one for the directories and one for the files, rather than this one large
compound command, but it’s nice to know that we can do it this way. The
important point here is to understand how operators and actions can be
used together to perform useful tasks.

Options
Finally, we have the options. The options are used to control the scope of a
find search. They may be included with other tests and actions when con-
structing find expressions. Table 17-8 lists the most commonly used options.

Table 17-8: find Options

Option Description

-depth Direct find to process a directory’s files before the
directory itself. This option is automatically applied
when the -delete action is specified.

-maxdepth levels Set the maximum number of levels that find will descend
into a directory tree when performing tests and actions.

-mindepth levels Set the minimum number of levels that find will descend
into a directory tree before applying tests and actions.

-mount Direct find not to traverse directories that are mounted
on other filesystems.

-noleaf Direct find not to optimize its search based on the
assumption that it is searching a Unix-like filesystem.
This is needed when scanning DOS/Windows file-
systems and CD-ROMs.

200 Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

A R C H I V I N G A N D B A C K U P

One of the primary tasks of a computer system’s admin-
istrator is to keep the system’s data secure. One way
this is done is by performing timely backups of the sys-
tem’s files. Even if you’re not a system administrator,
it is often useful to make copies of things and to move
large collections of files from place to place and from
device to device.

In this chapter, we will look at several common programs that are used
to manage collections of files. There are the file compression programs:

gzip—Compress or expand files.

bzip2—A block sorting file compressor.

the archiving programs:

tar—Tape-archiving utility.

zip—Package and compress files.

www.it-ebooks.info

http://www.it-ebooks.info/

and the file synchronization program:

rsync—Remote file and directory synchronization.

Compressing Files
Throughout the history of computing, there has been a struggle to get the
most data into the smallest available space, whether that space be memory,
storage devices, or network bandwidth. Many of the data services that we
take for granted today, such as portable music players, high-definition tele-
vision, or broadband Internet, owe their existence to effective data compres-
sion techniques.

Data compression is the process of removing redundancy from data.
Let’s consider an imaginary example. Say we had an entirely black picture
file with the dimensions of 100 pixels by 100 pixels. In terms of data storage
(assuming 24 bits, or 3 bytes per pixel), the image will occupy 30,000 bytes
of storage: 100 × 100 × 3 = 30,000.

An image that is all one color contains entirely redundant data. If we
were clever, we could encode the data in such a way as to simply describe
the fact that we have a block of 30,000 black pixels. So, instead of storing a
block of data containing 30,000 zeros (black is usually represented in image
files as zero), we could compress the data into the number 30,000, followed
by a zero to represent our data. Such a data compression scheme, called
run-length encoding, is one of the most rudimentary compression techniques.
Today’s techniques are much more advanced and complex, but the basic
goal remains the same—get rid of redundant data.

Compression algorithms (the mathematical techniques used to carry out
the compression) fall into two general categories, lossless and lossy. Lossless
compression preserves all the data contained in the original. This means
that when a file is restored from a compressed version, the restored file is
exactly the same as the original, uncompressed version. Lossy compression,
on the other hand, removes data as the compression is performed, to allow
more compression to be applied. When a lossy file is restored, it does not
match the original version; rather, it is a close approximation. Examples of
lossy compression are JPEG (for images) and MP3 (for music). In our dis-
cussion, we will look exclusively at lossless compression, since most data on
computers cannot tolerate any data loss.

gzip—Compress or Expand Files
The gzip program is used to compress one or more files. When executed, it
replaces the original file with a compressed version of the original. The cor-
responding gunzip program is used to restore compressed files to their ori-
ginal, uncompressed form. Here is an example:

[me@linuxbox ~]$ ls -l /etc > foo.txt
[me@linuxbox ~]$ ls -l foo.*

202 Chapter 18

www.it-ebooks.info

http://www.it-ebooks.info/

-rw-r--r-- 1 me me 15738 2012-10-14 07:15 foo.txt
[me@linuxbox ~]$ gzip foo.txt
[me@linuxbox ~]$ ls -l foo.*
-rw-r--r-- 1 me me 3230 2012-10-14 07:15 foo.txt.gz
[me@linuxbox ~]$ gunzip foo.txt
[me@linuxbox ~]$ ls -l foo.*
-rw-r--r-- 1 me me 15738 2012-10-14 07:15 foo.txt

In this example, we create a text file named foo.txt from a directory listing.
Next, we run gzip, which replaces the original file with a compressed version
named foo.txt.gz. In the directory listing of foo.*, we see that the original file
has been replaced with the compressed version and that the compressed
version is about one-fifth the size of the original. We can also see that the
compressed file has the same permissions and time stamp as the original.

Next, we run the gunzip program to uncompress the file. Afterward, we
can see that the compressed version of the file has been replaced with the
original, again with the permissions and timestamp preserved.

gzip has many options. Table 18-1 lists a few.

Table 18-1: gzip Options

Option Description

-c Write output to standard output and keep original files. May also
be specified with --stdout and --to-stdout.

-d Decompress. This causes gzip to act like gunzip. May also be
specified with --decompress or --uncompress.

-f Force compression even if a compressed version of the original file
already exists. May also be specified with --force.

-h Display usage information. May also be specified with --help.

-l List compression statistics for each file compressed. May also be
specified with --list.

-r If one or more arguments on the command line are directories,
recursively compress files contained within them. May also be
specified with --recursive.

-t Test the integrity of a compressed file. May also be specified with
--test.

-v Display verbose messages while compressing. May also be
specified with --verbose.

-number Set amount of compression. number is an integer in the range of 1
(fastest, least compression) to 9 (slowest, most compression). The
values 1 and 9 may also be expressed as --fast and --best,
respectively. The default value is 6.

Archiving and Backup 203
www.it-ebooks.info

http://www.it-ebooks.info/

Let’s look again at our earlier example:

[me@linuxbox ~]$ gzip foo.txt
[me@linuxbox ~]$ gzip -tv foo.txt.gz
foo.txt.gz: OK
[me@linuxbox ~]$ gzip -d foo.txt.gz

Here, we replaced the file foo.txt with a compressed version named
foo.txt.gz. Next, we tested the integrity of the compressed version, using the
-t and -v options. Finally, we decompressed the file back to its original form.

gzip can also be used in interesting ways via standard input and output:

[me@linuxbox ~]$ ls -l /etc | gzip > foo.txt.gz

This command creates a compressed version of a directory listing.
The gunzip program, which uncompresses gzip files, assumes that file-

names end in the extension .gz, so it’s not necessary to specify it, as long as
the specified name is not in conflict with an existing uncompressed file:

[me@linuxbox ~]$ gunzip foo.txt

If our goal were only to view the contents of a compressed text file, we
could do this:

[me@linuxbox ~]$ gunzip -c foo.txt | less

Alternatively, a program supplied with gzip, called zcat, is equivalent
to gunzip with the -c option. It can be used like the cat command on gzip -
compressed files:

[me@linuxbox ~]$ zcat foo.txt.gz | less

Note: There is a zless program, too. It performs the same function as the pipeline above.

bzip2—Higher Compression at the Cost of Speed
The bzip2 program, by Julian Seward, is similar to gzip but uses a different
compression algorithm, which achieves higher levels of compression at the
cost of compression speed. In most regards, it works in the same fashion as
gzip. A file compressed with bzip2 is denoted with the extension .bz2:

[me@linuxbox ~]$ ls -l /etc > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-r--r-- 1 me me 15738 2012-10-17 13:51 foo.txt
[me@linuxbox ~]$ bzip2 foo.txt
[me@linuxbox ~]$ ls -l foo.txt.bz2
-rw-r--r-- 1 me me 2792 2012-10-17 13:51 foo.txt.bz2
[me@linuxbox ~]$ bunzip2 foo.txt.bz2

204 Chapter 18

www.it-ebooks.info

http://www.it-ebooks.info/

As we can see, bzip2 can be used the same way as gzip. All the options
(except for -r) that we discussed for gzip are also supported in bzip2. Note,
however, that the compression level option (-number) has a somewhat differ-
ent meaning to bzip2. bzip2 comes with bunzip2 and bzcat for decompressing
files.

bzip2 also comes with the bzip2recover program, which will try to recover
damaged .bz2 files.

D O N ’ T B E C O M P R E S S I V E C O M P U L S I V E

I occasionally see people attempting to compress a file that has already been
compressed with an effective compression algorithm, by doing something
like this:

$ gzip picture.jpg

Don’t do it. You’re probably just wasting time and space! If you apply com-
pression to a file that is already compressed, you will actually end up with a lar-
ger file. This is because all compression techniques involve some overhead that
is added to the file to describe the compression. If you try to compress a file
that already contains no redundant information, the compression will not res-
ult in any savings to offset the additional overhead.

Archiving Files
A common file-management task used in conjunction with compression is
archiving. Archiving is the process of gathering up many files and bundling
them into a single large file. Archiving is often done as a part of system
backups. It is also used when old data is moved from a system to some type
of long-term storage.

tar—Tape Archiving Utility
In the Unix-like world of software, the tar program is the classic tool for
archiving files. Its name, short for tape archive, reveals its roots as a tool for
making backup tapes. While it is still used for that traditional task, it is
equally adept on other storage devices. We often see filenames that end
with the extension .tar or .tgz, which indicate a “plain” tar archive and a
gzipped archive, respectively. A tar archive can consist of a group of separate
files, one or more directory hierarchies, or a mixture of both. The com-
mand syntax works like this:

tar mode[options] pathname...

where mode is one of the operating modes shown in Table 18-2 (only a partial
list is shown here; see the tar man page for a complete list).

Archiving and Backup 205
www.it-ebooks.info

http://www.it-ebooks.info/

Table 18-2: tar Modes

Mode Description

c Create an archive from a list of files and/or directories.

x Extract an archive.

r Append specified pathnames to the end of an archive.

t List the contents of an archive.

tar uses a slightly odd way of expressing options, so we’ll need some
examples to show how it works. First, let’s re-create our playground from the
previous chapter:

[me@linuxbox ~]$ mkdir -p playground/dir-{00{1..9},0{10..99},100}
[me@linuxbox ~]$ touch playground/dir-{00{1..9},0{10..99},100}/file-{A..Z}

Next, let’s create a tar archive of the entire playground:

[me@linuxbox ~]$ tar cf playground.tar playground

This command creates a tar archive named playground.tar, which con-
tains the entire playground directory hierarchy. We can see that the mode
and the f option, which is used to specify the name of the tar archive, may
be joined together and do not require a leading dash. Note, however, that
the mode must always be specified first, before any other option.

To list the contents of the archive, we can do this:

[me@linuxbox ~]$ tar tf playground.tar

For a more detailed listing, we can add the v (verbose) option:

[me@linuxbox ~]$ tar tvf playground.tar

Now, let’s extract the playground in a new location. We will do this by
creating a new directory named foo, changing the directory, and extracting
the tar archive:

[me@linuxbox ~]$ mkdir foo
[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ tar xf ../playground.tar
[me@linuxbox foo]$ ls
playground

If we examine the contents of ~/foo/playground, we see that the archive
was successfully installed, creating a precise reproduction of the original
files. There is one caveat, however: Unless you are operating as the super-
user, files and directories extracted from archives take on the ownership
of the user performing the restoration, rather than the original owner.

206 Chapter 18

www.it-ebooks.info

http://www.it-ebooks.info/

Another interesting behavior of tar is the way it handles pathnames in
archives. The default for pathnames is relative, rather than absolute. tar
does this by simply removing any leading slash from the pathname when
creating the archive. To demonstrate, we will re-create our archive, this
time specifying an absolute pathname:

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ tar cf playground2.tar ~/playground

Remember, ~/playground will expand into /home/me/playground when we
press the ENTER key, so we will get an absolute pathname for our demonstra-
tion. Next, we will extract the archive as before and watch what happens:

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ tar xf ../playground2.tar
[me@linuxbox foo]$ ls
home playground
[me@linuxbox foo]$ ls home
me
[me@linuxbox foo]$ ls home/me
playground

Here we can see that when we extracted our second archive, it re-created
the directory home/me/playground relative to our current working directory,
~/foo, not relative to the root directory, as would have been the case with an
absolute pathname. This may seem like an odd way for it to work, but it’s
actually more useful this way, as it allows us to extract archives to any loca-
tion rather than being forced to extract them to their original locations.
Repeating the exercise with the inclusion of the verbose option (v) will give
a clearer picture of what’s going on.

Let’s consider a hypothetical, yet practical, example of tar in action.
Imagine we want to copy the home directory and its contents from one sys-
tem to another and we have a large USB hard drive that we can use for the
transfer. On our modern Linux system, the drive is “automagically” moun-
ted in the /media directory. Let’s also imagine that the disk has a volume
name of BigDisk when we attach it. To make the tar archive, we can do the
following:

[me@linuxbox ~]$ sudo tar cf /media/BigDisk/home.tar /home

After the tar file is written, we unmount the drive and attach it to the
second computer. Again, it is mounted at /media/BigDisk. To extract the
archive, we do this:

[me@linuxbox2 ~]$ cd /
[me@linuxbox2 /]$ sudo tar xf /media/BigDisk/home.tar

What’s important to see here is that we must first change directory to /
so that the extraction is relative to the root directory, since all pathnames
within the archive are relative.

Archiving and Backup 207
www.it-ebooks.info

http://www.it-ebooks.info/

When extracting an archive, it’s possible to limit what is extracted. For
example, if we wanted to extract a single file from an archive, it could be
done like this:

tar xf archive.tar pathname

By adding the trailing pathname to the command, we ensure that tar will
restore only the specified file. Multiple pathnames may be specified. Note
that the pathname must be the full, exact relative pathname as stored in the
archive. When specifying pathnames, wildcards are not normally supported;
however, the GNU version of tar (which is the version most often found in
Linux distributions) supports them with the --wildcards option. Here is an
example using our previous playground.tar file:

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ tar xf ../playground2.tar --wildcards 'home/me/playground/
dir-*/file-A'

This command will extract only files matching the specified pathname
including the wildcard dir-*.

tar is often used in conjunction with find to produce archives. In this
example, we will use find to produce a set of files to include in an archive:

[me@linuxbox ~]$ find playground -name 'file-A' -exec tar rf playground.tar '{
}' '+'

Here we use find to match all the files in playground named file-A and
then, using the -exec action, we invoke tar in the append mode (r) to add
the matching files to the archive playground.tar.

Using tar with find is a good way to create incremental backups of a direct-
ory tree or an entire system. By using find to match files newer than a time-
stamp file, we could create an archive that contains only files newer than
the last archive, assuming that the timestamp file is updated right after each
archive is created.

tar can also make use of both standard input and output. Here is a com-
prehensive example:

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ find playground -name 'file-A' | tar cf - --files-from=- | gzip
> playground.tgz

In this example, we used the find program to produce a list of matching
files and piped them into tar. If the filename - is specified, it is taken to mean
standard input or output, as needed. (By the way, this convention of using - to
represent standard input/output is used by a number of other programs,
too.) The --files-from option (which may also be specified as -T) causes tar
to read its list of pathnames from a file rather than the command line. Lastly,
the archive produced by tar is piped into gzip to create the compressed archive
playground.tgz. The .tgz extension is the conventional extension given to gzip-
compressed tar files. The extension .tar.gz is also used sometimes.

208 Chapter 18

www.it-ebooks.info

http://www.it-ebooks.info/

While we used the gzip program externally to produce our compressed
archive, modern versions of GNU tar support both gzip and bzip2 compres-
sion directly with the use of the z and j options, respectively. Using our pre-
vious example as a base, we can simplify it this way:

[me@linuxbox ~]$ find playground -name 'file-A' | tar czf playground.tgz -T -

If we had wanted to create a bzip2-compressed archive instead, we could
have done this:

[me@linuxbox ~]$ find playground -name 'file-A' | tar cjf playground.tbz -T -

By simply changing the compression option from z to j (and changing
the output file’s extension to .tbz to indicate a bzip2-compressed file), we
enabled bzip2 compression.

Another interesting use of standard input and output with the tar com-
mand involves transferring files between systems over a network. Imagine
that we had two machines running a Unix-like system equipped with tar and
ssh. In such a scenario, we could transfer a directory from a remote system
(named remote-sys for this example) to our local system:

[me@linuxbox ~]$ mkdir remote-stuff
[me@linuxbox ~]$ cd remote-stuff
[me@linuxbox remote-stuff]$ ssh remote-sys 'tar cf - Documents' | tar xf -
me@remote-sys's password:
[me@linuxbox remote-stuff]$ ls
Documents

Here we were able to copy a directory named Documents from the remote
system remote-sys to a directory within the directory named remote-stuff on the
local system. How did we do this? First, we launched the tar program on the
remote system using ssh. You will recall that ssh allows us to execute a pro-
gram remotely on a networked computer and “see” the results on the local
system—the standard output produced on the remote system is sent to the
local system for viewing. We can take advantage of this by having tar create
an archive (the c mode) and send it to standard output, rather than a file
(the f option with the dash argument), thereby transporting the archive
over the encrypted tunnel provided by ssh to the local system. On the local
system, we execute tar and have it expand an archive (the x mode) supplied
from standard input (again, the f option with the dash argument).

zip—Package and Compress Files
The zip program is both a compression tool and an archiver. The file format
used by the program is familiar to Windows users, as it reads and writes .zip
files. In Linux, however, gzip is the predominant compression program with
bzip2 being a close second. Linux users mainly use zip for exchanging files
with Windows systems, rather than performing compression and archiving.

Archiving and Backup 209
www.it-ebooks.info

http://www.it-ebooks.info/

In its most basic usage, zip is invoked like this:

zip options zipfile file...

For example, to make a zip archive of our playground, we would do this:

[me@linuxbox ~]$ zip -r playground.zip playground

Unless we include the -r option for recursion, only the playground
directory (but none of its contents) is stored. Although the addition of the
extension .zip is automatic, we will include the file extension for clarity.

During the creation of the zip archive, zip will normally display a series
of messages like this:

 adding: playground/dir-020/file-Z (stored 0%)
 adding: playground/dir-020/file-Y (stored 0%)
 adding: playground/dir-020/file-X (stored 0%)
 adding: playground/dir-087/ (stored 0%)
 adding: playground/dir-087/file-S (stored 0%)

These messages show the status of each file added to the archive. zip will
add files to the archive using one of two storage methods: Either it will “store”
a file without compression, as shown here, or it will “deflate” the file, which
performs compression. The numeric value displayed after the storage method
indicates the amount of compression achieved. Since our playground con-
tains only empty files, no compression is performed on its contents.

Extracting the contents of a zip file is straightforward when using the
unzip program:

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ unzip ../playground.zip

One thing to note about zip (as opposed to tar) is that if an existing
archive is specified, it is updated rather than replaced. This means that the
existing archive is preserved, but new files are added and matching files are
replaced.

Files may be listed and extracted selectively from a zip archive by spe-
cifying them to unzip:

[me@linuxbox ~]$ unzip -l playground.zip playground/dir-087/file-Z
Archive: ./playground.zip
 Length Date Time Name
 -------- ---- ---- ----
 0 10-05-12 09:25 playground/dir-087/file-Z
 -------- -------
 0 1 file
[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ unzip ../playground.zip playground/dir-087/file-Z
Archive: ../playground.zip
replace playground/dir-087/file-Z? [y]es, [n]o, [A]ll, [N]one, [r]ename: y
 extracting: playground/dir-087/file-Z

210 Chapter 18

www.it-ebooks.info

http://www.it-ebooks.info/

Using the -l option causes unzip to merely list the contents of the archive
without extracting the file. If no file(s) are specified, unzip will list all files in
the archive. The -v option can be added to increase the verbosity of the list-
ing. Note that when the archive extraction conflicts with an existing file, the
user is prompted before the file is replaced.

Like tar, zip can make use of standard input and output, though its
implementation is somewhat less useful. It is possible to pipe a list of file-
names to zip via the -@ option:

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ find playground -name "file-A" | zip -@ file-A.zip

Here we use find to generate a list of files matching the test -name "file-A"
and then pipe the list into zip, which creates the archive file-A.zip containing
the selected files.

zip also supports writing its output to standard output, but its use is lim-
ited because very few programs can make use of the output. Unfortunately,
the unzip program does not accept standard input. This prevents zip and
unzip from being used together to perform network file copying like tar.

zip can, however, accept standard input, so it can be used to compress
the output of other programs:

[me@linuxbox ~]$ ls -l /etc/ | zip ls-etc.zip -
 adding: - (deflated 80%)

In this example, we pipe the output of ls into zip. Like tar, zip inter-
prets the trailing dash as “use standard input for the input file.”

The unzip program allows its output to be sent to standard output when
the -p (for pipe) option is specified:

[me@linuxbox ~]$ unzip -p ls-etc.zip | less

We touched on some of the basic things that zip and unzip can do. They
both have a lot of options that add to their flexibility, though some are plat-
form specific to other systems. The man pages for both zip and unzip are pretty
good and contain useful examples.

Synchronizing Files and Directories
A common strategy for maintaining a backup copy of a system involves keep-
ing one or more directories synchronized with another directory (or direct-
ories) located on either the local system (usually a removable storage device
of some kind) or a remote system. We might, for example, have a local
copy of a website under development and synchronize it from time to time
with the “live” copy on a remote web server.

Archiving and Backup 211
www.it-ebooks.info

http://www.it-ebooks.info/

rsync—Remote File and Directory Synchronization
In the Unix-like world, the preferred tool for this task is rsync. This program
can synchronize both local and remote directories by using the rsync remote-
update protocol, which allows rsync to quickly detect the differences between
two directories and perform the minimum amount of copying required to
bring them into sync. This makes rsync very fast and economical to use, com-
pared to other kinds of copy programs.

rsync is invoked like this:

rsync options source destination

where source and destination are each one of the following:

A local file or directory

A remote file or directory in the form of [user@]host:path

A remote rsync server specified with a URI of rsync://[user@]host[:port]/path

Note that either the source or the destination must be a local file. Remote-
to-remote copying is not supported.

Let’s try rsync out on some local files. First, let’s clean out our foo directory:

[me@linuxbox ~]$ rm -rf foo/*

Next, we’ll synchronize the playground directory with a corresponding
copy in foo:

[me@linuxbox ~]$ rsync -av playground foo

We’ve included both the -a option (for archiving—causes recursion and
preservation of file attributes) and the -v option (verbose output) to make
a mirror of the playground directory within foo. While the command runs, we
will see a list of the files and directories being copied. At the end, we will see
a summary message like this, indicating the amount of copying performed:

sent 135759 bytes received 57870 bytes 387258.00 bytes/sec
total size is 3230 speedup is 0.02

If we run the command again, we will see a different result:

[me@linuxbox ~]$ rsync -av playgound foo
building file list ... done

 sent 22635 bytes received 20 bytes 45310.00 bytes/sec
total size is 3230 speedup is 0.14

Notice that there was no listing of files. This is because rsync detected that
there were no differences between ~/playground and ~/foo/playground, and
therefore it didn’t need to copy anything. If we modify a file in playground
and run rsync again, we see that rsync detected the change and copied only
the updated file.

212 Chapter 18

www.it-ebooks.info

http://www.it-ebooks.info/

[me@linuxbox ~]$ touch playground/dir-099/file-Z
[me@linuxbox ~]$ rsync -av playground foo
building file list ... done
playground/dir-099/file-Z
sent 22685 bytes received 42 bytes 45454.00 bytes/sec
total size is 3230 speedup is 0.14

As a practical example, let’s consider the imaginary external hard drive
that we used earlier with tar. If we attach the drive to our system and, once
again, it is mounted at /media/BigDisk, we can perform a useful system backup
by first creating a directory named /backup on the external drive and then
using rsync to copy the most important stuff from our system to the external
drive:

[me@linuxbox ~]$ mkdir /media/BigDisk/backup
[me@linuxbox ~]$ sudo rsync -av --delete /etc /home /usr/local /media/BigDisk/
backup

In this example, we copied the /etc, /home, and /usr/local directories
from our system to our imaginary storage device. We included the --delete
option to remove files that may have existed on the backup device that no
longer existed on the source device (this is irrelevant the first time we make
a backup but will be useful on subsequent copies). Repeating the procedure
of attaching the external drive and running this rsync command would be a
useful (though not ideal) way of keeping a small system backed up. Of course,
an alias would be helpful here, too. We could create an alias and add it to
our .bashrc file to provide this feature:

alias backup='sudo rsync -av --delete /etc /home /usr/local /media/BigDisk/bac
kup'

Now all we have to do is attach our external drive and run the backup
command to do the job.

Using rsync over a Network
One of the real beauties of rsync is that it can be used to copy files over a
network. After all, the r in rsync stands for remote. Remote copying can be
done in one of two ways.

The first way is with another system that has rsync installed, along with
a remote shell program such as ssh. Let’s say we had another system on our
local network with a lot of available hard drive space and we wanted to per-
form our backup operation using the remote system instead of an external
drive. Assuming that it already had a directory named /backup where we
could deliver our files, we could do this:

[me@linuxbox ~]$ sudo rsync -av --delete --rsh=ssh /etc /home /usr/local remote-
sys:/backup

Archiving and Backup 213
www.it-ebooks.info

http://www.it-ebooks.info/

We made two changes to our command to facilitate the network copy.
First, we added the --rsh=ssh option, which instructs rsync to use the ssh pro-
gram as its remote shell. In this way, we were able to use an SSH-encrypted
tunnel to securely transfer the data from the local system to the remote
host. Second, we specified the remote host by prefixing its name (in this
case the remote host is named remote-sys) to the destination pathname.

The second way that rsync can be used to synchronize files over a net-
work is by using an rysnc server. rsync can be configured to run as a daemon
and listen to incoming requests for synchronization. This is often done to
allow mirroring of a remote system. For example, Red Hat Software main-
tains a large repository of software packages under development for its Fedora
distribution. It is useful for software testers to mirror this collection during
the testing phase of the distribution release cycle. Since files in the repository
change frequently (often more than once a day), it is desirable to maintain a
local mirror by periodic synchronization, rather than by bulk copying of the
repository. One of these repositories is kept at Georgia Tech; we could mirror
it using our local copy of rsync and Georgia Tech’s rsync server like this:

[me@linuxbox ~]$ mkdir fedora-devel
[me@linuxbox ~]$ rsync -av -delete rsync://rsync.gtlib.gatech.edu/fedora-
linux-core/development/i386/os fedora-devel

In this example, we use the URI of the remote rsync server, which con-
sists of a protocol (rsync://), followed by the remote hostname (rsync.gtlib
.gatech.edu), followed by the pathname of the repository.

214 Chapter 18

www.it-ebooks.info

http://www.it-ebooks.info/

R E G U L A R E X P R E S S I O N S

In the next few chapters, we are going to look at tools
used to manipulate text. As we have seen, text data
plays an important role on all Unix-like systems, such
as Linux. But before we can fully appreciate all of the
features offered by these tools, we have to examine a
technology that is frequently associated with the most
sophisticated uses of these tools—regular expressions.

As we have navigated the many features and facilities offered by the com-
mand line, we have encountered some truly arcane shell features and com-
mands, such as shell expansion and quoting, keyboard shortcuts, and command
history, not to mention the vi editor. Regular expressions continue this “tra-
dition” and may be (arguably) the most arcane feature of them all. This is
not to suggest that the time it takes to learn about them is not worth the
effort. Quite the contrary. A good understanding will enable us to perform
amazing feats, though their full value may not be immediately apparent.

www.it-ebooks.info

http://www.it-ebooks.info/

What Are Regular Expressions?
Simply put, regular expressions are symbolic notations used to identify pat-
terns in text. In some ways, they resemble the shell’s wildcard method of
matching file- and pathnames but on a much grander scale. Regular expres-
sions are supported by many command-line tools and by most programming
languages to facilitate the solution of text manipulation problems. However,
to further confuse things, not all regular expressions are the same; they vary
slightly from tool to tool and from programming language to language. For
our discussion, we will limit ourselves to regular expressions as described in
the POSIX standard (which will cover most of the command-line tools), as
opposed to many programming languages (most notably Perl), which use
slightly larger and richer sets of notations.

grep—Search Through Text
The main program we will use to work with regular expressions is our old
pal, grep. The name grep is actually derived from the phrase global regular
expression print, so we can see that grep has something to do with regular
expressions. In essence, grep searches text files for the occurrence of a
specified regular expression and outputs any line containing a match to
standard output.

So far, we have used grep with fixed strings, like so:

[me@linuxbox ~]$ ls /usr/bin | grep zip

This will list all the files in the /usr/bin directory whose names contain
the substring zip.

The grep program accepts options and arguments this way:

grep [options] regex [file...]

where regex is a regular expression.
Table 19-1 lists the commonly used grep options.

Table19-1: grep Options

Option Description

-i Ignore case. Do not distinguish between upper- and lowercase
characters. May also be specified --ignore-case.

-v Invert match. Normally, grep prints lines that contain a match.
This option causes grep to print every line that does not contain
a match. May also be specified --invert-match.

-c Print the number of matches (or non-matches if the -v option is
also specified) instead of the lines themselves. May also be
specified --count.

216 Chapter 19

www.it-ebooks.info

http://www.it-ebooks.info/

Table 19-1 (continued)

Option Description

-l Print the name of each file that contains a match instead of the
lines themselves. May also be specified --files-with-matches.

-L Like the -l option, but print only the names of files that do not
contain matches. May also be specified --files-without-match.

-n Prefix each matching line with the number of the line within the
file. May also be specified --line-number.

-h For multifile searches, suppress the output of filenames. May
also be specified --no-filename.

In order to more fully explore grep, let’s create some text files to search:

[me@linuxbox ~]$ ls /bin > dirlist-bin.txt
[me@linuxbox ~]$ ls /usr/bin > dirlist-usr-bin.txt
[me@linuxbox ~]$ ls /sbin > dirlist-sbin.txt
[me@linuxbox ~]$ ls /usr/sbin > dirlist-usr-sbin.txt
[me@linuxbox ~]$ ls dirlist*.txt
dirlist-bin.txt dirlist-sbin.txt dirlist-usr-sbin.txt
dirlist-usr-bin.txt

We can perform a simple search of our list of files like this:

[me@linuxbox ~]$ grep bzip dirlist*.txt
dirlist-bin.txt:bzip2
dirlist-bin.txt:bzip2recover

In this example, grep searches all of the listed files for the string bzip and
finds two matches, both in the file dirlist-bin.txt. If we were interested in only
the files that contained matches rather than the matches themselves, we
could specify the -l option:

[me@linuxbox ~]$ grep -l bzip dirlist*.txt
dirlist-bin.txt

Conversely, if we wanted to see a list of only the files that did not con-
tain a match, we could do this:

[me@linuxbox ~]$ grep -L bzip dirlist*.txt
dirlist-sbin.txt
dirlist-usr-bin.txt
dirlist-usr-sbin.txt

Metacharacters and Literals
While it may not seem apparent, our grep searches have been using regular
expressions all along, albeit very simple ones. The regular expression bzip is

Regular Expressions 217
www.it-ebooks.info

http://www.it-ebooks.info/

taken to mean that a match will occur only if the line in the file contains at
least four characters and that somewhere in the line the characters b, z, i,
and p are found in that order, with no other characters in between. The
characters in the string bzip are all literal characters, in that they match them-
selves. In addition to literals, regular expressions may also include metachar-
acters, which are used to specify more complex matches. Regular expression
metacharacters consist of the following:

^ $. [] { } - ? * + () | \

All other characters are considered literals, though the backslash char-
acter is used in a few cases to create metasequences, as well as allowing the
metacharacters to be escaped and treated as literals instead of being inter-
preted as metacharacters.

Note: As we can see, many of the regular-expression metacharacters are also characters that
have meaning to the shell when expansion is performed. When we pass regular expres-
sions containing metacharacters on the command line, it is vital that they be enclosed
in quotes to prevent the shell from attempting to expand them.

The Any Character
The first metacharacter we will look at is the dot or period character, which
is used to match any character. If we include it in a regular expression, it will
match any character in that character position. Here’s an example:

[me@linuxbox ~]$ grep -h '.zip' dirlist*.txt
bunzip2
bzip2
bzip2recover
gunzip
gzip
funzip
gpg-zip
preunzip
prezip
prezip-bin
unzip
unzipsfx

We searched for any line in our files that matches the regular expres-
sion .zip. There are a couple of interesting things to note about the results.
Notice that the zip program was not found. This is because the inclusion of
the dot metacharacter in our regular expression increased the length of the
required match to four characters; because the name zip contains only three,
it does not match. Also, if any files in our lists had contained the file exten-
sion .zip, they would have been matched, because the period character in
the file extension is treated as “any character,” too.

218 Chapter 19

www.it-ebooks.info

http://www.it-ebooks.info/

Anchors
The caret (^) and dollar sign ($) characters are treated as anchors in regular
expressions. This means that they cause the match to occur only if the regular
expression is found at the beginning of the line (^) or at the end of the line ($).

[me@linuxbox ~]$ grep -h '^zip' dirlist*.txt
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit
[me@linuxbox ~]$ grep -h 'zip$' dirlist*.txt
gunzip
gzip
funzip
gpg-zip
preunzip
prezip
unzip
zip
[me@linuxbox ~]$ grep -h '^zip$' dirlist*.txt
zip

Here we searched the list of files for the string zip located at the begin-
ning of the line, the end of the line, and on a line where it is at both the
beginning and the end of the line (i.e., by itself on the line.) Note that the
regular expression ^$ (a beginning and an end with nothing in between)
will match blank lines.

A C R O S S W O R D P U Z Z L E H E L P E R

My wife loves crossword puzzles, and she will sometimes ask me for help with
a particular question. Something like, “What’s a five-letter word whose third
letter is j and last letter is r that means . . . ?” This kind of question got me
thinking.

Did you know that your Linux system contains a dictionary? It does. Take
a look in the /usr/share/dict directory and you might find one, or several. The
dictionary files located there are just long lists of words, one per line, arranged
in alphabetical order. On my system, the words file contains just over 98,500
words. To find possible answers to the crossword puzzle question above, we
could do this:

[me@linuxbox ~]$ grep -i '^..j.r$' /usr/share/dict/words
Major
major

Using this regular expression, we can find all the words in our dictionary
file that are five letters long and have a j in the third position and an r in the
last position.

Regular Expressions 219
www.it-ebooks.info

http://www.it-ebooks.info/

Bracket Expressions and Character Classes
In addition to matching any character at a given position in our regular
expression, we can also match a single character from a specified set of char-
acters by using bracket expressions. With bracket expressions, we can specify a
set of characters (including characters that would otherwise be interpreted
as metacharacters) to be matched. In this example, using a two-character set,
we match any line that contains the string bzip or gzip:

[me@linuxbox ~]$ grep -h '[bg]zip' dirlist*.txt
bzip2
bzip2recover
gzip

A set may contain any number of characters, and metacharacters lose
their special meaning when placed within brackets. However, there are two
cases in which metacharacters are used within bracket expressions and have
different meanings. The first is the caret (^), which is used to indicate nega-
tion; the second is the dash (-), which is used to indicate a character range.

Negation
If the first character in a bracket expression is a caret (^), the remaining
characters are taken to be a set of characters that must not be present at the
given character position. We do this by modifying our previous example:

[me@linuxbox ~]$ grep -h '[^bg]zip' dirlist*.txt
bunzip2
gunzip
funzip
gpg-zip
preunzip
prezip
prezip-bin
unzip
unzipsfx

With negation activated, we get a list of files that contain the string zip
preceded by any character except b or g. Notice that the file zip was not
found. A negated character set still requires a character at the given posi-
tion, but the character must not be a member of the negated set.

The caret character invokes negation only if it is the first character
within a bracket expression; otherwise, it loses its special meaning and
becomes an ordinary character in the set.

Traditional Character Ranges
If we wanted to construct a regular expression that would find every file in
our lists whose name begins with an uppercase letter, we could do this:

[me@linuxbox ~]$ grep -h '^[ABCDEFGHIJKLMNOPQRSTUVWXZY]' dirlist*.txt

220 Chapter 19

www.it-ebooks.info

http://www.it-ebooks.info/

It’s just a matter of putting all 26 uppercase letters in a bracket expression.
But the idea of all that typing is deeply troubling, so there is another way:

[me@linuxbox ~]$ grep -h '^[A-Z]' dirlist*.txt
MAKEDEV
ControlPanel
GET
HEAD
POST
X
X11
Xorg
MAKEFLOPPIES
NetworkManager
NetworkManagerDispatcher

By using a 3-character range, we can abbreviate the 26 letters. Any range
of characters can be expressed this way, including multiple ranges such as this
expression, which matches all filenames starting with letters and numbers:

[me@linuxbox ~]$ grep -h '^[A-Za-z0-9]' dirlist*.txt

In character ranges, we see that the dash character is treated specially,
so how do we actually include a dash character in a bracket expression? By
making it the first character in the expression. Consider

[me@linuxbox ~]$ grep -h '[A-Z]' dirlist*.txt

This will match every filename containing an uppercase letter. This, on
the other hand,

[me@linuxbox ~]$ grep -h '[-AZ]' dirlist*.txt

will match every filename containing a dash, an uppercase A, or an upper-
case Z.

POSIX Character Classes
The traditional character ranges are an easily understood and effective
way to handle the problem of quickly specifying sets of characters. Unfor-
tunately, they don’t always work. While we have not encountered any prob-
lems with our use of grep so far, we might run into problems using other
programs.

Back in Chapter 4, we looked at how wildcards are used to perform
pathname expansion. In that discussion, we said that character ranges could
be used in a manner almost identical to the way they are used in regular
expressions, but here’s the problem:

[me@linuxbox ~]$ ls /usr/sbin/[ABCDEFGHIJKLMNOPQRSTUVWXYZ]*
/usr/sbin/MAKEFLOPPIES
/usr/sbin/NetworkManagerDispatcher
/usr/sbin/NetworkManager

Regular Expressions 221
www.it-ebooks.info

http://www.it-ebooks.info/

(Depending on the Linux distribution, we will get a different list of files,
possibly an empty list. This example is from Ubuntu.) This command pro-
duces the expected result—a list of only the files whose names begin with
an uppercase letter. But with this command we get an entirely different res-
ult (only a partial listing of the results is shown):

[me@linuxbox ~]$ ls /usr/sbin/[A-Z]*
/usr/sbin/biosdecode
/usr/sbin/chat
/usr/sbin/chgpasswd
/usr/sbin/chpasswd
/usr/sbin/chroot
/usr/sbin/cleanup-info
/usr/sbin/complain
/usr/sbin/console-kit-daemon

Why is that? It’s a long story, but here’s the short version.
Back when Unix was first developed, it only knew about ASCII char-

acters, and this feature reflects that fact. In ASCII, the first 32 characters
(numbers 0–31) are control codes (things like tabs, backspaces, and car-
riage returns). The next 32 (32–63) contain printable characters, including
most punctuation characters and the numerals zero through nine. The next
32 (numbers 64–95) contain the uppercase letters and a few more punctu-
ation symbols. The final 31 (numbers 96–127) contain the lowercase letters
and yet more punctuation symbols. Based on this arrangement, systems
using ASCII used a collation order that looked like this:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

This differs from proper dictionary order, which is like this:

aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ

As the popularity of Unix spread beyond the United States, there grew
a need to support characters not found in US English. The ASCII table was
expanded to use a full 8 bits, adding character numbers 128–255, which
accommodated many more languages. To support this ability, the POSIX
standards introduced a concept called a locale, which could be adjusted to
select the character set needed for a particular location. We can see the lan-
guage setting of our system using this command:

[me@linuxbox ~]$ echo $LANG
en_US.UTF-8

With this setting, POSIX-compliant applications will use a dictionary
collation order rather than ASCII order. This explains the behavior of the
commands above. A character range of [A-Z], when interpreted in dictionary
order, includes all of the alphabetic characters except the lowercase a—
hence our results.

222 Chapter 19

www.it-ebooks.info

http://www.it-ebooks.info/

To partially work around this problem, the POSIX standard includes
a number of character classes, which provide useful ranges of characters.
They are described in Table 19-2.

Table 19-2: POSIX Character Classes

Character Class Description

[:alnum:] The alphanumeric characters; in ASCII, equivalent to
[A-Za-z0-9]

[:word:] The same as [:alnum:], with the addition of the underscore
character (_)

[:alpha:] The alphabetic characters; in ASCII, equivalent to [A-Za-z]

[:blank:] Includes the space and tab characters

[:cntrl:] The ASCII control codes; includes the ASCII characters 0
through 31 and 127

[:digit:] The numerals 0 through 9

[:graph:] The visible characters; in ASCII, includes characters 33
through 126

[:lower:] The lowercase letters

[:punct:] The punctuation characters; in ASCII, equivalent to
[-!"#$%&'()*+,./:;<=>?@[\\\]_`{|}~]

[:print:] The printable characters; all the characters in [:graph:]
plus the space character

[:space:] The whitespace characters including space, tab, carriage
return, newline, vertical tab, and form feed; in ASCII,
equivalent to [\t\r\n\v\f]

[:upper:] The uppercase characters

[:xdigit:] Characters used to express hexadecimal numbers; in ASCII,
equivalent to [0-9A-Fa-f]

Even with the character classes, there is still no convenient way to
express partial ranges, such as [A-M].

Using character classes, we can repeat our directory listing and see an
improved result.

[me@linuxbox ~]$ ls /usr/sbin/[[:upper:]]*
/usr/sbin/MAKEFLOPPIES
/usr/sbin/NetworkManagerDispatcher
/usr/sbin/NetworkManager

Regular Expressions 223
www.it-ebooks.info

http://www.it-ebooks.info/

Remember, however, that this is not an example of a regular expres-
sion; rather it is the shell performing pathname expansion. We show it here
because POSIX character classes can be used for both.

R E V E R T I N G T O T R A D I T I O N A L C O L L A T I O N O R D E R

You can opt to have your system use the traditional (ASCII) collation order by
changing the value of the LANG environment variable. As we saw in the previous
section, the LANG variable contains the name of the language and character set
used in your locale. This value was originally determined when you selected an
installation language as your Linux was installed.

To see the locale settings, use the locale command:

[me@linuxbox ~]$ locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_PAPER="en_US.UTF-8"
LC_NAME="en_US.UTF-8"
LC_ADDRESS="en_US.UTF-8"
LC_TELEPHONE="en_US.UTF-8"
LC_MEASUREMENT="en_US.UTF-8"
LC_IDENTIFICATION="en_US.UTF-8"
LC_ALL=

To change the locale to use the traditional Unix behaviors, set the LANG
variable to POSIX:

[me@linuxbox ~]$ export LANG=POSIX

Note that this change converts the system to use US English (more spe-
cifically, ASCII) for its character set, so be sure this is really what you want.

You can make this change permanent by adding this line to your .bashrc file:

export LANG=POSIX

POSIX Basic vs. Extended Regular Expressions
Just when we thought this couldn’t get any more confusing, we discover that
POSIX also splits regular expression implementations into two kinds: basic
regular expressions (BRE) and extended regular expressions (ERE). The features we
have covered so far are supported by any application that is POSIX compli-
ant and implements BRE. Our grep program is one such program.

What’s the difference between BRE and ERE? It’s a matter of metachar-
acters. With BRE, the following metacharacters are recognized: ^ $. [] *
All other characters are considered literals. With ERE, the following meta-
characters (and their associated functions) are added: () { } ? + |

224 Chapter 19

www.it-ebooks.info

http://www.it-ebooks.info/

However (and this is the fun part), the characters () {} are treated as
metacharacters in BRE if they are escaped with a backslash, whereas with
ERE, preceding any metacharacter with a backslash causes it to be treated
as a literal.

Since the features we are going to discuss next are part of ERE, we are
going to need to use a different grep. Traditionally, this has been performed
by the egrep program, but the GNU version of grep also supports extended
regular expressions when the -E option is used.

P O S I X

During the 1980s, Unix became a very popular commercial operating system,
but by 1988, the Unix world was in turmoil. Many computer manufacturers had
licensed the Unix source code from its creators AT&T, and were supplying vari-
ous versions of the operating system with their systems. However, in their efforts
to create product differentiation, each manufacturer added proprietary changes
and extensions. This started to limit the compatibility of the software. As always
with proprietary vendors, each was trying to play a winning game of “lock-in” with
their customers. This dark time in the history of Unix is known today as the
Balkanization.

Enter the IEEE (Institute of Electrical and Electronics Engineers). In the
mid-1980s, the IEEE began developing a set of standards that would define how
Unix (and Unix-like) systems would perform. These standards, formally known
as IEEE 1003, define the application programming interfaces (APIs), the shell and
utilities that are to be found on a standard Unix-like system. The name POSIX,
which stands for Portable Operating System Interface (with the X added to the end
for extra snappiness), was suggested by Richard Stallman (yes, that Richard
Stallman) and was adopted by the IEEE.

Alternation
The first of the extended regular expression features we will discuss is called
alternation, which is the facility that allows a match to occur from among a
set of expressions. Just as a bracket expression allows a single character to
match from a set of specified characters, alternation allows matches from a
set of strings or other regular expressions.

To demonstrate, we’ll use grep in conjunction with echo. First, let’s try a
plain old string match:

[me@linuxbox ~]$ echo "AAA" | grep AAA
AAA
[me@linuxbox ~]$ echo "BBB" | grep AAA
[me@linuxbox ~]$

A pretty straightforward example, in which we pipe the output of echo
into grep and see the results. When a match occurs, we see it printed out;
when no match occurs, we see no results.

Regular Expressions 225
www.it-ebooks.info

http://www.it-ebooks.info/

Now we’ll add alternation, signified by the vertical pipe metacharacter:

[me@linuxbox ~]$ echo "AAA" | grep -E 'AAA|BBB'
AAA
[me@linuxbox ~]$ echo "BBB" | grep -E 'AAA|BBB'
BBB
[me@linuxbox ~]$ echo "CCC" | grep -E 'AAA|BBB'
[me@linuxbox ~]$

Here we see the regular expression 'AAA|BBB', which means “match
either the string AAA or the string BBB.” Notice that since this is an extended
feature, we added the -E option to grep (though we could have used the egrep
program instead), and we enclosed the regular expression in quotes to pre-
vent the shell from interpreting the vertical pipe metacharacter as a pipe
operator. Alternation is not limited to two choices:

[me@linuxbox ~]$ echo "AAA" | grep -E 'AAA|BBB|CCC'
AAA

To combine alternation with other regular-expression elements, we can
use () to separate the alternation:

[me@linuxbox ~]$ grep -Eh '^(bz|gz|zip)' dirlist*.txt

This expression will match the filenames in our lists that start with
either bz, gz, or zip. If we leave off the parentheses, the meaning of this
regular expression changes to match any filename that begins with bz or
contains gz or contains zip:

[me@linuxbox ~]$ grep -Eh '^bz|gz|zip' dirlist*.txt

Quantifiers
Extended regular expressions support several ways to specify the number of
times an element is matched.

?—Match an Element Zero Times or One Time
This quantifier means, in effect, “Make the preceding element optional.”
Let’s say we wanted to check a phone number for validity and we considered
a phone number to be valid if it matched either of these two forms, (nnn)
nnn-nnnn or nnn nnn-nnnn, where n is a numeral. We could construct a regular
expression like this:

^\(?[0-9][0-9][0-9]\)? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$

In this expression, we follow the parentheses characters with question
marks to indicate that they are to be matched zero or one time. Again, since
the parentheses are normally metacharacters (in ERE), we precede them
with backslashes to cause them to be treated as literals instead.

226 Chapter 19

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s try it:

[me@linuxbox ~]$ echo "(555) 123-4567" | grep -E '^\(?[0-9][0-9][0-9]\)? [0-9]
[0-9][0-9]$'
(555) 123-4567
[me@linuxbox ~]$ echo "555 123-4567" | grep -E '^\(?[0-9][0-9][0-9]\)? [0-9]
[0-9][0-9]-[0-9][0-9][0-9][0-9]$'
555 123-4567
[me@linuxbox ~]$ echo "AAA 123-4567" | grep -E '^\(?[0-9][0-9][0-9]\)? [0-9]
[0-9][0-9]-[0-9][0-9][0-9][0-9]$'
[me@linuxbox ~]$

Here we see that the expression matches both forms of the phone num-
ber but does not match one containing non-numeric characters.

*—Match an Element Zero or More Times
Like the ? metacharacter, the * is used to denote an optional item; however,
unlike the ?, the item may occur any number of times, not just once. Let’s
say we want to see if a string is a sentence; that is, it starts with an uppercase
letter, then contains any number of upper- and lowercase letters and spaces,
and ends with a period. To match this (very crude) definition of a sentence,
we could use a regular expression like this:

[[:upper:]][[:upper:][:lower:]]*\.

The expression consists of three items: a bracket expression contain-
ing the [:upper:] character class, a bracket expression containing both the
[:upper:] and [:lower:] character classes and a space, and a period escaped
with a backslash. The second element is trailed with an * metacharacter
so that after the leading uppercase letter in our sentence, any number of
upper- and lowercase letters and spaces may follow it and still match:

[me@linuxbox ~]$ echo "This works." | grep -E '[[:upper:]][[:upper:][:lower:]
]*\.'
This works.
[me@linuxbox ~]$ echo "This Works." | grep -E '[[:upper:]][[:upper:][:lower:]
]*\.'
This Works.
[me@linuxbox ~]$ echo "this does not" | grep -E '[[:upper:]][[:upper:][:lower:
]]*\.'
[me@linuxbox ~]$

The expression matches the first two tests, but not the third, since it
lacks the required leading uppercase character and trailing period.

+—Match an Element One or More Times
The + metacharacter works much like the *, except it requires at least one
instance of the preceding element to cause a match. Here is a regular
expression that will match only lines consisting of groups of one or more
alphabetic characters separated by single spaces:

^([[:alpha:]]+ ?)+$

Regular Expressions 227
www.it-ebooks.info

http://www.it-ebooks.info/

Let’s try it:

[me@linuxbox ~]$ echo "This that" | grep -E '^([[:alpha:]]+ ?)+$'
This that
[me@linuxbox ~]$ echo "a b c" | grep -E '^([[:alpha:]]+ ?)+$'
a b c
[me@linuxbox ~]$ echo "a b 9" | grep -E '^([[:alpha:]]+ ?)+$'
[me@linuxbox ~]$ echo "abc d" | grep -E '^([[:alpha:]]+ ?)+$'
[me@linuxbox ~]$

We see that this expression does not match the line "a b 9", because it
contains a non-alphabetic character; nor does it match "abc d", because
more than one space character separates the characters c and d.

{ }—Match an Element a Specific Number of Times
The { and } metacharacters are used to express minimum and maximum
numbers of required matches. They may be specified in four possible ways,
as shown in Table 19-3.

Table 19-3: Specifying the Number of Matches

Specifier Meaning

{n} Match the preceding element if it occurs exactly n times.

{n,m} Match the preceding element if it occurs at least n times, but no
more than m times.

{n,} Match the preceding element if it occurs n or more times.

{,m} Match the preceding element if it occurs no more than m times.

Going back to our earlier example with the phone numbers, we can use
this method of specifying repetitions to simplify our original regular expres-
sion from

^\(?[0-9][0-9][0-9]\)? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$

to

^\(?[0-9]{3}\)? [0-9]{3}-[0-9]{4}$

Let’s try it:

[me@linuxbox ~]$ echo "(555) 123-4567" | grep -E '^\(?[0-9]{3}\)? [0-9]{3}-[0-
9]{4}$'
(555) 123-4567
[me@linuxbox ~]$ echo "555 123-4567" | grep -E '^\(?[0-9]{3}\)? [0-9]{3}-[0-9]
{4}$'
555 123-4567
[me@linuxbox ~]$ echo "5555 123-4567" | grep -E '^\(?[0-9]{3}\)? [0-9]{3}-[0-9
]{4}$'
[me@linuxbox ~]$

228 Chapter 19

www.it-ebooks.info

http://www.it-ebooks.info/

As we can see, our revised expression can successfully validate numbers
both with and without the parentheses, while rejecting those numbers that
are not properly formatted.

Putting Regular Expressions to Work
Let’s look at some of the commands we already know and see how they can
be used with regular expressions.

Validating a Phone List with grep
In our earlier example, we looked at single phone numbers and checked
them for proper formatting. A more realistic scenario would be checking a
list of numbers instead, so let’s make a list. We’ll do this by reciting a magical
incantation to the command line. It will be magic because we have not covered
most of the commands involved, but worry not—we will get there in future
chapters. Here is the incantation:

[me@linuxbox ~]$ for i in {1..10}; do echo "(${RANDOM:0:3}) ${RANDOM:0:3}-$
{RANDOM:0:4}" >> phonelist.txt; done

This command will produce a file named phonelist.txt containing 10
phone numbers. Each time the command is repeated, another 10 numbers
are added to the list. We can also change the value 10 near the beginning of
the command to produce more or fewer phone numbers. If we examine the
contents of the file, however, we see we have a problem:

[me@linuxbox ~]$ cat phonelist.txt
(232) 298-2265
(624) 381-1078
(540) 126-1980
(874) 163-2885
(286) 254-2860
(292) 108-518
(129) 44-1379
(458) 273-1642
(686) 299-8268
(198) 307-2440

Some of the numbers are malformed, which is perfect for our purposes
because we will use grep to validate them.

One useful method of validation would be to scan the file for invalid
numbers and display the resulting list.

[me@linuxbox ~]$ grep -Ev '^\([0-9]{3}\) [0-9]{3}-[0-9]{4}$' phonelist.txt
(292) 108-518
(129) 44-1379
[me@linuxbox ~]$

Here we use the -v option to produce an inverse match so that we will
output only the lines in the list that do not match the specified expression.

Regular Expressions 229
www.it-ebooks.info

http://www.it-ebooks.info/

The expression itself includes the anchor metacharacters at each end to
ensure that the number has no extra characters at either end. This expres-
sion also requires that the parentheses be present in a valid number, unlike
our earlier phone number example.

Finding Ugly Filenames with find
The find command supports a test based on a regular expression. There is
an important consideration to keep in mind when using regular expressions
in find versus grep. Whereas grep will print a line when the line contains a
string that matches an expression, find requires that the pathname exactly
match the regular expression. In the following example, we will use find with
a regular expression to find every pathname that contains any character that
is not a member of the following set:

[-_./0-9a-zA-Z]

Such a scan would reveal pathnames that contain embedded spaces and
other potentially offensive characters:

[me@linuxbox ~]$ find . -regex '.*[^-_./0-9a-zA-Z].*'

Due to the requirement for an exact match of the entire pathname, we
use .* at both ends of the expression to match zero or more instances of any
character. In the middle of the expression, we use a negated bracket expres-
sion containing our set of acceptable pathname characters.

Searching for Files with locate
The locate program supports both basic (the --regexp option) and extended
(the --regex option) regular expressions. With it, we can perform many of
the same operations that we performed earlier with our dirlist files:

[me@linuxbox ~]$ locate --regex 'bin/(bz|gz|zip)'
/bin/bzcat
/bin/bzcmp
/bin/bzdiff
/bin/bzegrep
/bin/bzexe
/bin/bzfgrep
/bin/bzgrep
/bin/bzip2
/bin/bzip2recover
/bin/bzless
/bin/bzmore
/bin/gzexe
/bin/gzip
/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

230 Chapter 19

www.it-ebooks.info

http://www.it-ebooks.info/

Using alternation, we perform a search for pathnames that contain
either bin/bz, bin/gz, or /bin/zip.

Searching for Text with less and vim
less and vim share the same method of searching for text. Pressing the / key
followed by a regular expression will perform a search. We use less to view
our phonelist.txt file:

[me@linuxbox ~]$ less phonelist.txt

Then we search for our validation expression:

(232) 298-2265
(624) 381-1078
(540) 126-1980
(874) 163-2885
(286) 254-2860
(292) 108-518
(129) 44-1379
(458) 273-1642
(686) 299-8268
(198) 307-2440
~
~
~
/^\([0-9]{3}\) [0-9]{3}-[0-9]{4}$

less will highlight the strings that match, leaving the invalid ones easy
to spot:

(232) 298-2265
(624) 381-1078
(540) 126-1980
(874) 163-2885
(286) 254-2860
(292) 108-518
(129) 44-1379
(458) 273-1642
(686) 299-8268
(198) 307-2440
~
~
~
(END)

vim, on the other hand, supports basic regular expressions, so our search
expression would look like this:

/([0-9]\{3\}) [0-9]\{3\}-[0-9]\{4\}

We can see that the expression is mostly the same; however, many of the
characters that are considered metacharacters in extended expressions are
considered literals in basic expressions. They are treated as metacharacters

Regular Expressions 231
www.it-ebooks.info

http://www.it-ebooks.info/

only when escaped with a backslash. Depending on the particular configur-
ation of vim on our system, the matching will be highlighted. If not, try the
command-mode command :hlsearch to activate search highlighting.

Note: Depending on your distribution, vim may or may not support text-search highlighting.
Ubuntu, in particular, supplies a very stripped-down version of vim by default. On
such systems, you may want to use your package manager to install a more complete
version of vim.

Final Note
In this chapter, we’ve seen a few of the many uses of regular expressions.
We can find even more if we use regular expressions to search for additional
applications that use them. We can do that by searching the man pages:

[me@linuxbox ~]$ cd /usr/share/man/man1
[me@linuxbox man1]$ zgrep -El 'regex|regular expression' *.gz

The zgrep program provides a frontend for grep, allowing it to read com-
pressed files. In our example, we search the compressed Section 1 man page
files in their usual location. The result of this command is a list of files con-
taining the string regex or regular expression. As we can see, regular expres-
sions show up in a lot of programs.

There is one feature found in basic regular expressions that we did not
cover. Called back references, this feature will be discussed in the next chapter.

232 Chapter 19

www.it-ebooks.info

http://www.it-ebooks.info/

T E X T P R O C E S S I N G

All Unix-like operating systems rely heavily on text
files for several types of data storage. So it makes sense
that there are many tools for manipulating text. In
this chapter, we will look at programs that are used
to “slice and dice” text. In the next chapter, we will look at more text pro-
cessing, focusing on programs that are used to format text for printing and
other kinds of human consumption.

This chapter will revisit some old friends and introduce us to some
new ones:

cat—Concatenate files and print on the standard output.

sort—Sort lines of text files.

uniq—Report or omit repeated lines.

cut—Remove sections from each line of files.

paste—Merge lines of files.

join—Join lines of two files on a common field.

comm—Compare two sorted files line by line.

www.it-ebooks.info

http://www.it-ebooks.info/

diff—Compare files line by line.

patch—Apply a diff file to an original.

tr—Translate or delete characters.

sed—Stream editor for filtering and transforming text.

aspell—Interactive spell checker.

Applications of Text
So far, we have learned about a couple of text editors (nano and vim), looked
at a bunch of configuration files, and witnessed the output of dozens of com-
mands, all in text. But what else is text used for? Many things, it turns out.

Documents
Many people write documents using plaintext formats. While it is easy to see
how a small text file could be useful for keeping simple notes, it is also pos-
sible to write large documents in text format. One popular approach is to write
a large document in a text format and then use a markup language to describe
the formatting of the finished document. Many scientific papers are written
using this method, as Unix-based text-processing systems were among the
first systems that supported the advanced typographical layout needed by
writers in technical disciplines.

Web Pages
The world’s most popular type of electronic document is probably the
web page. Web pages are text documents that use either HTML (Hypertext
Markup Language) or XML (Extensible Markup Language) as a markup lan-
guage to describe the document’s visual format.

Email
Email is an intrinsically text-based medium. Even non-text attachments are
converted into a text representation for transmission. We can see this for
ourselves by downloading an email message and then viewing it in less. We
will see that the message begins with a header that describes the source of the
message and the processing it received during its journey, followed by the
body of the message with its content.

Printer Output
On Unix-like systems, output destined for a printer is sent as plaintext or, if
the page contains graphics, is converted into a text format page-description
language known as PostScript, which is then sent to a program that generates
the graphic dots to be printed.

234 Chapter 20

www.it-ebooks.info

http://www.it-ebooks.info/

Program Source Code
Many of the command-line programs found on Unix-like systems were cre-
ated to support system administration and software development, and text-
processing programs are no exception. Many of them are designed to solve
software development problems. The reason text processing is important
to software developers is that all software starts out as text. Source code, the
part of the program the programmer actually writes, is always in text format.

Revisiting Some Old Friends
Back in Chapter 6, we learned about some commands that are able to accept
standard input in addition to command-line arguments. We touched on
them only briefly then, but now we will take a closer look at how they can
be used to perform text processing.

cat—Concatenate Files and Print on Standard Output
The cat program has a number of interesting options. Many of them are used
to better visualize text content. One example is the -A option, which is used to
display non-printing characters in the text. There are times when we want to
know if control characters are embedded in our otherwise visible text. The
most common of these are tab characters (as opposed to spaces) and car-
riage returns, often present as end-of-line characters in MS-DOS-style text
files. Another common situation is a file containing lines of text with trailing
spaces.

Let’s create a test file using cat as a primitive word processor. To do this,
we’ll just enter the command cat (along with specifying a file for redirected
output) and type our text, followed by ENTER to properly end the line, then
CTRL-D to indicate to cat that we have reached end-of-file. In this example,
we enter a leading tab character and follow the line with some trailing spaces:

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox jumped over the lazy dog.

[me@linuxbox ~]$

Next, we will use cat with the -A option to display the text:

[me@linuxbox ~]$ cat -A foo.txt
^IThe quick brown fox jumped over the lazy dog. $
[me@linuxbox ~]$

As we can see in the results, the tab character in our text is represented
by ^I. This common notation means “CTRL-I,” which, as it turns out, is the
same as a tab character. We also see that a $ appears at the true end of the
line, indicating that our text contains trailing spaces.

Text Processing 235
www.it-ebooks.info

http://www.it-ebooks.info/

M S - D O S T E X T V S . U N I X T E X T
One of the reasons you may want to use cat to look for non-printing characters
in text is to spot hidden carriage returns. Where do hidden carriage returns
come from? DOS and Windows! Unix and DOS don’t define the end of a line
the same way in text files. Unix ends a line with a linefeed character (ASCII 10),
while MS-DOS and its derivatives use the sequence carriage return (ASCII 13)
and linefeed to terminate each line of text.

There are a several ways to convert files from DOS to Unix format. On
many Linux systems, programs called dos2unix and unix2dos can convert text files
to and from DOS format. However, if you don’t have dos2unix on your system,
don’t worry. The process of converting text from DOS to Unix format is very
simple; it simply involves the removal of the offending carriage returns. That is
easily accomplished by a couple of the programs discussed later in this chapter.

cat also has options that are used to modify text. The two most promin-
ent are -n, which numbers lines, and -s, which suppresses the output of mul-
tiple blank lines. We can demonstrate thusly:

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox

jumped over the lazy dog.
[me@linuxbox ~]$ cat -ns foo.txt
 1 The quick brown fox
 2
 3 jumped over the lazy dog.
[me@linuxbox ~]$

In this example, we create a new version of our foo.txt test file, which
contains two lines of text separated by two blank lines. After processing by
cat with the -ns options, the extra blank line is removed and the remaining
lines are numbered. While this is not much of a process to perform on text,
it is a process.

sort—Sort Lines of Text Files
The sort program sorts the contents of standard input, or one or more files
specified on the command line, and sends the results to standard output.
Using the same technique that we used with cat, we can demonstrate pro-
cessing of standard input directly from the keyboard.

[me@linuxbox ~]$ sort > foo.txt
c
b
a
[me@linuxbox ~]$ cat foo.txt
a
b
c

236 Chapter 20

www.it-ebooks.info

http://www.it-ebooks.info/

After entering the command, we type the letters c, b, and a, followed
once again by CTRL-D to indicate end-of-file. We then view the resulting file
and see that the lines now appear in sorted order.

Since sort can accept multiple files on the command line as arguments,
it is possible to merge multiple files into a single sorted whole. For example,
if we had three text files and wanted to combine them into a single sorted
file, we could do something like this:

sort file1.txt file2.txt file3.txt > final_sorted_list.txt

sort has several interesting options. Table 20-1 shows a partial list.

Table 20-1: Common sort Options

Option Long Option Description

-b --ignore-leading-blanks By default, sorting is performed on the
entire line, starting with the first char-
acter in the line. This option causes
sort to ignore leading spaces in lines
and calculates sorting based on the first
non-whitespace character on the line.

-f --ignore-case Makes sorting case insensitive.

-n --numeric-sort Performs sorting based on the numeric
evaluation of a string. Using this
option allows sorting to be performed on
numeric values rather than alphabetic
values.

-r --reverse Sort in reverse order. Results are in
descending rather than ascending
order.

-k --key=field1[,field2] Sort based on a key field located
from field1 to field2 rather than the
entire line.

-m --merge Treat each argument as the name of a
presorted file. Merge multiple files into
a single sorted result without perform-
ing any additional sorting.

-o --output=file Send sorted output to file rather than to
standard output.

-t --field-separator=char Define the field-separator character. By
default, fields are separated by spaces
or tabs.

Text Processing 237
www.it-ebooks.info

http://www.it-ebooks.info/

Although most of the options above are pretty self-explanatory, some
are not. First, let’s look at the -n option, used for numeric sorting. With this
option, it is possible to sort values based on numeric values. We can demon-
strate this by sorting the results of the du command to determine the largest
users of disk space. Normally, the du command lists the results of a summary
in pathname order:

[me@linuxbox ~]$ du -s /usr/share/* | head
252 /usr/share/aclocal
96 /usr/share/acpi-support
8 /usr/share/adduser
196 /usr/share/alacarte
344 /usr/share/alsa
8 /usr/share/alsa-base
12488 /usr/share/anthy
8 /usr/share/apmd
21440 /usr/share/app-install
48 /usr/share/application-registry

In this example, we pipe the results into head to limit the results to the
first 10 lines. We can produce a numerically sorted list to show the 10 largest
consumers of space this way:

[me@linuxbox ~]$ du -s /usr/share/* | sort -nr | head
509940 /usr/share/locale-langpack
242660 /usr/share/doc
197560 /usr/share/fonts
179144 /usr/share/gnome
146764 /usr/share/myspell
144304 /usr/share/gimp
135880 /usr/share/dict
76508 /usr/share/icons
68072 /usr/share/apps
62844 /usr/share/foomatic

By using the -nr options, we produce a reverse numerical sort, with
the largest values appearing first in the results. This sort works because the
numerical values occur at the beginning of each line. But what if we want
to sort a list based on some value found within the line? For example, the
result of ls -l looks like this:

[me@linuxbox ~]$ ls -l /usr/bin | head
total 152948
-rwxr-xr-x 1 root root 34824 2012-04-04 02:42 [
-rwxr-xr-x 1 root root 101556 2011-11-27 06:08 a2p
-rwxr-xr-x 1 root root 13036 2012-02-27 08:22 aconnect
-rwxr-xr-x 1 root root 10552 2011-08-15 10:34 acpi
-rwxr-xr-x 1 root root 3800 2012-04-14 03:51 acpi_fakekey
-rwxr-xr-x 1 root root 7536 2012-04-19 00:19 acpi_listen
-rwxr-xr-x 1 root root 3576 2012-04-29 07:57 addpart
-rwxr-xr-x 1 root root 20808 2012-01-03 18:02 addr2line
-rwxr-xr-x 1 root root 489704 2012-10-09 17:02 adept_batch

Ignoring, for the moment, that ls can sort its results by size, we could
use sort to sort this list by file size, as well.

238 Chapter 20

www.it-ebooks.info

http://www.it-ebooks.info/

[me@linuxbox ~]$ ls -l /usr/bin | sort -nr -k 5 | head
-rwxr-xr-x 1 root root 8234216 2012-04-07 17:42 inkscape
-rwxr-xr-x 1 root root 8222692 2012-04-07 17:42 inkview
-rwxr-xr-x 1 root root 3746508 2012-03-07 23:45 gimp-2.4
-rwxr-xr-x 1 root root 3654020 2012-08-26 16:16 quanta
-rwxr-xr-x 1 root root 2928760 2012-09-10 14:31 gdbtui
-rwxr-xr-x 1 root root 2928756 2012-09-10 14:31 gdb
-rwxr-xr-x 1 root root 2602236 2012-10-10 12:56 net
-rwxr-xr-x 1 root root 2304684 2012-10-10 12:56 rpcclient
-rwxr-xr-x 1 root root 2241832 2012-04-04 05:56 aptitude
-rwxr-xr-x 1 root root 2202476 2012-10-10 12:56 smbcacls

Many uses of sort involve the processing of tabular data, such as the
results of the ls command above. If we apply database terminology to the
table above, we would say that each row is a record and that each record con-
sists of multiple fields, such as the file attributes, link count, filename, file
size and so on. sort is able to process individual fields. In database terms,
we are able to specify one or more key fields to use as sort keys. In the example
above, we specify the n and r options to perform a reverse numerical sort
and specify -k 5 to make sort use the fifth field as the key for sorting.

The k option is very interesting and has many features, but first we need
to talk about how sort defines fields. Let’s consider a very simple text file
consisting of a single line containing the author’s name:

William Shotts

By default, sort sees this line as having two fields. The first field contains
the characters William and the second field contains the characters Shotts,
meaning that whitespace characters (spaces and tabs) are used as delimiters
between fields and that the delimiters are included in the field when sorting
is performed.

Looking again at a line from our ls output, we can see that a line con-
tains eight fields and that the fifth field is the file size:

-rwxr-xr-x 1 root root 8234216 2012-04-07 17:42 inkscape

For our next series of experiments, let’s consider the following file con-
taining the history of three popular Linux distributions released from 2006
to 2008. Each line in the file has three fields: the distribution name, the ver-
sion number, and the date of release in MM/DD/YYYY format:

SUSE 10.2 12/07/2006
Fedora 10 11/25/2008
SUSE 11.0 06/19/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007
SUSE 10.3 10/04/2007
Ubuntu 6.10 10/26/2006
Fedora 7 05/31/2007
Ubuntu 7.10 10/18/2007
Ubuntu 7.04 04/19/2007
SUSE 10.1 05/11/2006
Fedora 6 10/24/2006

Text Processing 239
www.it-ebooks.info

http://www.it-ebooks.info/

Fedora 9 05/13/2008
Ubuntu 6.06 06/01/2006
Ubuntu 8.10 10/30/2008
Fedora 5 03/20/2006

Using a text editor (perhaps vim), we’ll enter this data and name the
resulting file distros.txt.

Next, we’ll try sorting the file and observe the results:

[me@linuxbox ~]$ sort distros.txt
Fedora 10 11/25/2008
Fedora 5 03/20/2006
Fedora 6 10/24/2006
Fedora 7 05/31/2007
Fedora 8 11/08/2007
Fedora 9 05/13/2008
SUSE 10.1 05/11/2006
SUSE 10.2 12/07/2006
SUSE 10.3 10/04/2007
SUSE 11.0 06/19/2008
Ubuntu 6.06 06/01/2006
Ubuntu 6.10 10/26/2006
Ubuntu 7.04 04/19/2007
Ubuntu 7.10 10/18/2007
Ubuntu 8.04 04/24/2008
Ubuntu 8.10 10/30/2008

Well, it mostly worked. The problem occurs in the sorting of the Fedora
version numbers. Since a 1 comes before a 5 in the character set, version 10
ends up at the top while version 9 falls to the bottom.

To fix this problem, we have to sort on multiple keys. We want to per-
form an alphabetic sort on the first field and then a numeric sort on the
third field. sort allows multiple instances of the -k option so that multiple
sort keys can be specified. In fact, a key may include a range of fields. If
no range is specified (as has been the case with our previous examples),
sort uses a key that begins with the specified field and extends to the end
of the line.

Here is the syntax for our multikey sort:

[me@linuxbox ~]$ sort --key=1,1 --key=2n distros.txt
Fedora 5 03/20/2006
Fedora 6 10/24/2006
Fedora 7 05/31/2007
Fedora 8 11/08/2007
Fedora 9 05/13/2008
Fedora 10 11/25/2008
SUSE 10.1 05/11/2006
SUSE 10.2 12/07/2006
SUSE 10.3 10/04/2007
SUSE 11.0 06/19/2008
Ubuntu 6.06 06/01/2006
Ubuntu 6.10 10/26/2006
Ubuntu 7.04 04/19/2007
Ubuntu 7.10 10/18/2007
Ubuntu 8.04 04/24/2008
Ubuntu 8.10 10/30/2008

240 Chapter 20

www.it-ebooks.info

http://www.it-ebooks.info/

Though we used the long form of the option for clarity, -k 1,1 -k 2n
would be exactly equivalent. In the first instance of the key option, we spe-
cified a range of fields to include in the first key. Since we wanted to limit
the sort to just the first field, we specified 1,1, which means “start at field 1
and end at field 1.” In the second instance, we specified 2n, which means
that field 2 is the sort key and that the sort should be numeric. An option
letter may be included at the end of a key specifier to indicate the type of
sort to be performed. These option letters are the same as the global options
for the sort program: b (ignore leading blanks), n (numeric sort), r (reverse
sort), and so on.

The third field in our list contains a date in an inconvenient format for
sorting. On computers, dates are usually formatted in YYYY-MM-DD order
to make chronological sorting easy, but ours are in the American format of
MM/DD/YYYY. How can we sort this list in chronological order?

Fortunately, sort provides a way. The key option allows specification of
offsets within fields, so we can define keys within fields:

[me@linuxbox ~]$ sort -k 3.7nbr -k 3.1nbr -k 3.4nbr distros.txt
Fedora 10 11/25/2008
Ubuntu 8.10 10/30/2008
SUSE 11.0 06/19/2008
Fedora 9 05/13/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007
Ubuntu 7.10 10/18/2007
SUSE 10.3 10/04/2007
Fedora 7 05/31/2007
Ubuntu 7.04 04/19/2007
SUSE 10.2 12/07/2006
Ubuntu 6.10 10/26/2006
Fedora 6 10/24/2006
Ubuntu 6.06 06/01/2006
SUSE 10.1 05/11/2006
Fedora 5 03/20/2006

By specifying -k 3.7, we instruct sort to use a sort key that begins at the
seventh character within the third field, which corresponds to the start of
the year. Likewise, we specify -k 3.1 and -k 3.4 to isolate the month and day
portions of the date. We also add the n and r options to achieve a reverse
numeric sort. The b option is included to suppress the leading spaces (whose
numbers vary from line to line, thereby affecting the outcome of the sort)
in the date field.

Some files don’t use tabs and spaces as field delimiters; take, for
example, the /etc/passwd file:

[me@linuxbox ~]$ head /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh

Text Processing 241
www.it-ebooks.info

http://www.it-ebooks.info/

lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh

The fields in this file are delimited with colons (:), so how would we
sort this file using a key field? sort provides the -t option to define the field
separator character. To sort the passwd file on the seventh field (the account’s
default shell), we could do this:

[me@linuxbox ~]$ sort -t ':' -k 7 /etc/passwd | head
me:x:1001:1001:Myself,,,:/home/me:/bin/bash
root:x:0:0:root:/root:/bin/bash
dhcp:x:101:102::/nonexistent:/bin/false
gdm:x:106:114:Gnome Display Manager:/var/lib/gdm:/bin/false
hplip:x:104:7:HPLIP system user,,,:/var/run/hplip:/bin/false
klog:x:103:104::/home/klog:/bin/false
messagebus:x:108:119::/var/run/dbus:/bin/false
polkituser:x:110:122:PolicyKit,,,:/var/run/PolicyKit:/bin/false
pulse:x:107:116:PulseAudio daemon,,,:/var/run/pulse:/bin/false

By specifying the colon character as the field separator, we can sort on
the seventh field.

uniq—Report or Omit Repeated Lines
Compared to sort, the uniq program is a lightweight. uniq performs a seem-
ingly trivial task. When given a sorted file (including standard input), it
removes any duplicate lines and sends the results to standard output. It is
often used in conjunction with sort to clean the output of duplicates.

Note: While uniq is a traditional Unix tool often used with sort, the GNU version of sort
supports a -u option, which removes duplicates from the sorted output.

Let’s make a text file to try this out:

[me@linuxbox ~]$ cat > foo.txt
a
b
c
a
b
c

Remember to type CTRL-D to terminate standard input. Now, if we run
uniq on our text file, the results are no different from our original file; the
duplicates were not removed:

[me@linuxbox ~]$ uniq foo.txt
a
b
c
a
b
c

242 Chapter 20

www.it-ebooks.info

http://www.it-ebooks.info/

For uniq to actually do its job, the input must be sorted first:

[me@linuxbox ~]$ sort foo.txt | uniq
a
b
c

This is because uniq only removes duplicate lines that are adjacent to
each other.

uniq has several options. Table 20-2 lists the common ones.

Table 20-2: Common uniq Options

Option Description

-c Output a list of duplicate lines preceded by the number of times
the line occurs.

-d Output only repeated lines, rather than unique lines.

-f n Ignore n leading fields in each line. Fields are separated by
whitespace as they are in sort; however, unlike sort, uniq has
no option for setting an alternative field separator.

-i Ignore case during the line comparisons.

-s n Skip (ignore) the leading n characters of each line.

-u Output only unique lines. This is the default.

Here we see uniq used to report the number of duplicates found in our
text file, using the -c option:

[me@linuxbox ~]$ sort foo.txt | uniq -c
 2 a
 2 b
 2 c

Slicing and Dicing
The next three programs we will discuss are used to peel columns of text
out of files and recombine them in useful ways.

cut—Remove Sections from Each Line of Files
The cut program is used to extract a section of text from a line and output
the extracted section to standard output. It can accept multiple file argu-
ments or input from standard input.

Specifying the section of the line to be extracted is somewhat awkward
and is specified using the options shown in Table 20-3.

Text Processing 243
www.it-ebooks.info

http://www.it-ebooks.info/

Table 20-3: cut Selection Options

Option Description

-c char_list Extract the portion of the line defined by char_list.
The list may consist of one or more comma-separated
numerical ranges.

-f field_list Extract one or more fields from the line as defined by
field_list. The list may contain one or more fields or
field ranges separated by commas.

-d delim_char When -f is specified, use delim_char as the field delimit-
ing character. By default, fields must be separated by a
single tab character.

--complement Extract the entire line of text, except for those portions
specified by -c and/or -f.

As we can see, the way cut extracts text is rather inflexible. cut is best
used to extract text from files that are produced by other programs, rather
than text directly typed by humans. We’ll take a look at our distros.txt file to
see if it is “clean” enough to be a good specimen for our cut examples. If we
use cat with the -A option, we can see if the file meets our requirements of
tab-separated fields.

[me@linuxbox ~]$ cat -A distros.txt
SUSE^I10.2^I12/07/2006$
Fedora^I10^I11/25/2008$
SUSE^I11.0^I06/19/2008$
Ubuntu^I8.04^I04/24/2008$
Fedora^I8^I11/08/2007$
SUSE^I10.3^I10/04/2007$
Ubuntu^I6.10^I10/26/2006$
Fedora^I7^I05/31/2007$
Ubuntu^I7.10^I10/18/2007$
Ubuntu^I7.04^I04/19/2007$
SUSE^I10.1^I05/11/2006$
Fedora^I6^I10/24/2006$
Fedora^I9^I05/13/2008$
Ubuntu^I6.06^I06/01/2006$
Ubuntu^I8.10^I10/30/2008$
Fedora^I5^I03/20/2006$

It looks good—no embedded spaces, just single tab characters between
the fields. Since the file uses tabs rather than spaces, we’ll use the -f option
to extract a field:

[me@linuxbox ~]$ cut -f 3 distros.txt
12/07/2006
11/25/2008
06/19/2008
04/24/2008
11/08/2007

244 Chapter 20

www.it-ebooks.info

http://www.it-ebooks.info/

10/04/2007
10/26/2006
05/31/2007
10/18/2007
04/19/2007
05/11/2006
10/24/2006
05/13/2008
06/01/2006
10/30/2008
03/20/2006

Because our distros file is tab delimited, it is best to use cut to extract
fields rather than characters. This is because when a file is tab delimited, it
is unlikely that each line will contain the same number of characters, which
makes calculating character positions within the line difficult or impossible.
In our example above, however, we now have extracted a field that luckily
contains data of identical length, so we can show how character extraction
works by extracting the year from each line:

[me@linuxbox ~]$ cut -f 3 distros.txt | cut -c 7-10
2006
2008
2008
2008
2007
2007
2006
2007
2007
2007
2006
2006
2008
2006
2008
2006

By running cut a second time on our list, we are able to extract charac-
ter positions 7 through 10, which corresponds to the year in our date field.
The 7-10 notation is an example of a range. The cut man page contains a
complete description of how ranges can be specified.

When working with fields, it is possible to specify a different field delim-
iter rather than the tab character. Here we will extract the first field from
the /etc/passwd file:

[me@linuxbox ~]$ cut -d ':' -f 1 /etc/passwd | head
root
daemon
bin
sys
sync
games
man

Text Processing 245
www.it-ebooks.info

http://www.it-ebooks.info/

lp
mail
news

Using the -d option, we are able to specify the colon character as the
field delimiter.

E X P A N D I N G T A B S
Our distros.txt file is ideally formatted for extracting fields using cut. But what if
we wanted a file that could be fully manipulated with cut by characters, rather
than fields? This would require us to replace the tab characters within the file
with the corresponding number of spaces. Fortunately, the GNU coreutils pack-
age includes a tool for that. Named expand, this program accepts either one or
more file arguments or standard input, and it outputs the modified text to
standard output.

If we process our distros.txt file with expand, we can use the cut -c to extract
any range of characters from the file. For example, we could use the follow-
ing command to extract the year of release from our list by expanding the file
and using cut to extract every character from the 23rd position to the end of
the line:

[me@linuxbox ~]$ expand distros.txt | cut -c 23-

coreutils also provides the unexpand program to substitute tabs for spaces.

paste—Merge Lines of Files
The paste command does the opposite of cut. Rather than extracting a
column of text from a file, it adds one or more columns of text to a file.
It does this by reading multiple files and combining the fields found in
each file into a single stream of standard output. Like cut, paste accepts
multiple file arguments and/or standard input. To demonstrate how paste
operates, we will perform some surgery on our distros.txt file to produce a
chronological list of releases.

From our earlier work with sort, we will first produce a list of distros
sorted by date and store the result in a file called distros-by-date.txt:

[me@linuxbox ~]$ sort -k 3.7nbr -k 3.1nbr -k 3.4nbr distros.txt > distros-by-
date.txt

Next, we will use cut to extract the first two fields from the file (the dis-
tro name and version) and store that result in a file named distro-versions.txt:

[me@linuxbox ~]$ cut -f 1,2 distros-by-date.txt > distros-versions.txt
[me@linuxbox ~]$ head distros-versions.txt

246 Chapter 20

www.it-ebooks.info

http://www.it-ebooks.info/

Fedora 10
Ubuntu 8.10
SUSE 11.0
Fedora 9
Ubuntu 8.04
Fedora 8
Ubuntu 7.10
SUSE 10.3
Fedora 7
Ubuntu 7.04

The final piece of preparation is to extract the release dates and store
them a file named distro-dates.txt:

[me@linuxbox ~]$ cut -f 3 distros-by-date.txt > distros-dates.txt
[me@linuxbox ~]$ head distros-dates.txt
11/25/2008
10/30/2008
06/19/2008
05/13/2008
04/24/2008
11/08/2007
10/18/2007
10/04/2007
05/31/2007
04/19/2007

We now have the parts we need. To complete the process, use paste to
put the column of dates ahead of the distro names and versions, thus creat-
ing a chronological list. This is done simply by using paste and ordering its
arguments in the desired arrangement.

[me@linuxbox ~]$ paste distros-dates.txt distros-versions.txt
11/25/2008 Fedora 10
10/30/2008 Ubuntu 8.10
06/19/2008 SUSE 11.0
05/13/2008 Fedora 9
04/24/2008 Ubuntu 8.04
11/08/2007 Fedora 8
10/18/2007 Ubuntu 7.10
10/04/2007 SUSE 10.3
05/31/2007 Fedora 7
04/19/2007 Ubuntu 7.04
12/07/2006 SUSE 10.2
10/26/2006 Ubuntu 6.10
10/24/2006 Fedora 6
06/01/2006 Ubuntu 6.06
05/11/2006 SUSE 10.1
03/20/2006 Fedora 5

join—Join Lines of Two Files on a Common Field
In some ways, join is like paste in that it adds columns to a file, but it does so
in a unique way. A join is an operation usually associated with relational data-
bases where data from multiple tables with a shared key field is combined to

Text Processing 247
www.it-ebooks.info

http://www.it-ebooks.info/

form a desired result. The join program performs the same operation. It
joins data from multiple files based on a shared key field.

To see how a join operation is used in a relational database, let’s ima-
gine a very small database consisting of two tables, each containing a single
record. The first table, called CUSTOMERS, has three fields: a customer
number (CUSTNUM), the customer’s first name (FNAME), and the cus-
tomer’s last name (LNAME):

CUSTNUM FNAME LNAME
========= ====== ======
4681934 John Smith

The second table is called ORDERS and contains four fields: an order
number (ORDERNUM), the customer number (CUSTNUM), the quantity
(QUAN), and the item ordered (ITEM):

ORDERNUM CUSTNUM QUAN ITEM
========== ========= ===== ====
3014953305 4681934 1 Blue Widget

Note that both tables share the field CUSTNUM. This is important, as it
allows a relationship between the tables.

Performing a join operation would allow us to combine the fields in the
two tables to achieve a useful result, such as preparing an invoice. Using the
matching values in the CUSTNUM fields of both tables, a join operation
could produce the following:

FNAME LNAME QUAN ITEM
====== ====== ===== ====
John Smith 1 Blue Widget

To demonstrate the join program, we’ll need to make a couple of files
with a shared key. To do this, we will use our distros-by-date.txt file. From this
file, we will construct two additional files. One contains the release dates (which
will be our shared key field for this demonstration) and the release names:

[me@linuxbox ~]$ cut -f 1,1 distros-by-date.txt > distros-names.txt
[me@linuxbox ~]$ paste distros-dates.txt distros-names.txt > distros-key-names
.txt
[me@linuxbox ~]$ head distros-key-names.txt
11/25/2008 Fedora
10/30/2008 Ubuntu
06/19/2008 SUSE
05/13/2008 Fedora
04/24/2008 Ubuntu
11/08/2007 Fedora
10/18/2007 Ubuntu
10/04/2007 SUSE
05/31/2007 Fedora
04/19/2007 Ubuntu

248 Chapter 20

www.it-ebooks.info

http://www.it-ebooks.info/

The second file contains the release dates and the version numbers:

[me@linuxbox ~]$ cut -f 2,2 distros-by-date.txt > distros-vernums.txt
[me@linuxbox ~]$ paste distros-dates.txt distros-vernums.txt > distros-key-
vernums.txt
[me@linuxbox ~]$ head distros-key-vernums.txt
11/25/2008 10
10/30/2008 8.10
06/19/2008 11.0
05/13/2008 9
04/24/2008 8.04
11/08/2007 8
10/18/2007 7.10
10/04/2007 10.3
05/31/2007 7
04/19/2007 7.04

We now have two files with a shared key (the “release date” field). It is
important to point out that the files must be sorted on the key field for join
to work properly.

[me@linuxbox ~]$ join distros-key-names.txt distros-key-vernums.txt | head
11/25/2008 Fedora 10
10/30/2008 Ubuntu 8.10
06/19/2008 SUSE 11.0
05/13/2008 Fedora 9
04/24/2008 Ubuntu 8.04
11/08/2007 Fedora 8
10/18/2007 Ubuntu 7.10
10/04/2007 SUSE 10.3
05/31/2007 Fedora 7
04/19/2007 Ubuntu 7.04

Note also that, by default, join uses whitespace as the input field delim-
iter and a single space as the output field delimiter. This behavior can be
modified by specifying options. See the join man page for details.

Comparing Text
It is often useful to compare versions of text files. For system administrators
and software developers, this is particularly important. A system adminis-
trator may, for example, need to compare an existing configuration file to a
previous version to diagnose a system problem. Likewise, a programmer fre-
quently needs to see what changes have been made to programs over time.

comm—Compare Two Sorted Files Line by Line
The comm program compares two text files, displaying the lines that are
unique to each one and the lines they have in common. To demonstrate,
we will create two nearly identical text files using cat:

[me@linuxbox ~]$ cat > file1.txt
a
b

Text Processing 249
www.it-ebooks.info

http://www.it-ebooks.info/

c
d
[me@linuxbox ~]$ cat > file2.txt
b
c
d
e

Next, we will compare the two files using comm:

[me@linuxbox ~]$ comm file1.txt file2.txt
a

b
c
d

e

As we can see, comm produces three columns of output. The first column
contains lines unique to the first file argument; the second column, the lines
unique to the second file argument; and the third column, the lines shared
by both files. comm supports options in the form -n where n is either 1, 2, or 3.
When used, these options specify which column(s) to suppress. For example,
if we wanted to output only the lines shared by both files, we would suppress
the output of columns 1 and 2:

[me@linuxbox ~]$ comm -12 file1.txt file2.txt
b
c
d

diff—Compare Files Line by Line
Like the comm program, diff is used to detect the differences between files.
However, diff is a much more complex tool, supporting many output for-
mats and the ability to process large collections of text files at once. diff is
often used by software developers to examine changes between different
versions of program source code because it has the ability to recursively
examine directories of source code, often referred to as source trees. One
common use for diff is the creation of diff files or patches that are used by
programs such as patch (which we’ll discuss shortly) to convert one version
of a file (or files) to another version.

If we use diff to look at our previous example files, we see its default
style of output: a terse description of the differences between the two files.

[me@linuxbox ~]$ diff file1.txt file2.txt
1d0
< a
4a4
> e

250 Chapter 20

www.it-ebooks.info

http://www.it-ebooks.info/

In the default format, each group of changes is preceded by a change
command (see Table 20-4) in the form of range operation range to describe
the positions and types of changes required to convert the first file to the
second file.

Table 20-4: diff Change Commands

Change Description

r1ar2 Append the lines at the position r2 in the second file to the
position r1 in the first file.

r1cr2 Change (replace) the lines at position r1 with the lines at the
position r2 in the second file.

r1dr2 Delete the lines in the first file at position r1, which would have
appeared at range r2 in the second file

In this format, a range is a comma-separated list of the starting line and
the ending line. While this format is the default (mostly for POSIX compli-
ance and backward compatibility with traditional Unix versions of diff), it
is not as widely used as other, optional formats. Two of the more popular
formats are the context format and the unified format.

When viewed using the context format (the -c option), the output looks
like this:

[me@linuxbox ~]$ diff -c file1.txt file2.txt
*** file1.txt 2012-12-23 06:40:13.000000000 -0500
--- file2.txt 2012-12-23 06:40:34.000000000 -0500

*** 1,4 ****
- a
 b
 c
 d
--- 1,4 ----
 b

 c
 d
+ e

The output begins with the names of the two files and their timestamps.
The first file is marked with asterisks, and the second file is marked with dashes.
Throughout the remainder of the listing, these markers will signify their
respective files. Next, we see groups of changes, including the default num-
ber of surrounding context lines. In the first group, we see *** 1,4 ****, which
indicates lines 1 through 4 in the first file. Later we see --- 1,4 ----, which indi-
cates lines 1 through 4 in the second file. Within a change group, lines begin
with one of four indicators, as shown in Table 20-5.

Text Processing 251
www.it-ebooks.info

http://www.it-ebooks.info/

Table 20-5: diff Context-Format Change Indicators

Indicator Meaning

(none) A line shown for context. It does not indicate a difference
between the two files.

- A line deleted. This line will appear in the first file but not in the
second file.

+ A line added. This line will appear in the second file but not in
the first file.

! A line changed. The two versions of the line will be displayed,
each in its respective section of the change group.

The unified format is similar to the context format but is more concise.
It is specified with the -u option:

[me@linuxbox ~]$ diff -u file1.txt file2.txt
--- file1.txt 2012-12-23 06:40:13.000000000 -0500
+++ file2.txt 2012-12-23 06:40:34.000000000 -0500
@@ -1,4 +1,4 @@
-a
 b
 c
 d
+e

The most notable difference between the context and unified formats
is the elimination of the duplicated lines of context, making the results of
the unified format shorter than those of the context format. In our example
above, we see file timestamps like those of the context format, followed by
the string @@ -1,4 +1,4 @@. This indicates the lines in the first file and the
lines in the second file described in the change group. Following this are
the lines themselves, with the default three lines of context. As shown in
Table 20-6, each line starts with one of three possible characters.

Table 20-6: diff Unified-Format Change Indicators

Character Meaning

(none) This line is shared by both files.

- This line was removed from the first file.

+ This line was added to the first file.

252 Chapter 20

www.it-ebooks.info

http://www.it-ebooks.info/

patch—Apply a diff to an Original
The patch program is used to apply changes to text files. It accepts output
from diff and is generally used to convert older version of files into newer
versions. Let’s consider a famous example. The Linux kernel is developed
by a large, loosely organized team of contributors who submit a constant
stream of small changes to the source code. The Linux kernel consists of
several million lines of code, while the changes that are made by one con-
tributor at one time are quite small. It makes no sense for a contributor to
send each developer an entire kernel source tree each time a small change
is made. Instead, a diff file is submitted. The diff file contains the change
from the previous version of the kernel to the new version with the contrib-
utor’s changes. The receiver then uses the patch program to apply the change
to his own source tree. Using diff/patch offers two significant advantages:

The diff file is very small, compared to the full size of the source tree.

The diff file concisely shows the change being made, allowing reviewers
of the patch to quickly evaluate it.

Of course, diff/patch will work on any text file, not just source code. It
would be equally applicable to configuration files or any other text.

To prepare a diff file for use with patch, the GNU documentation sug-
gests using diff as follows:

diff -Naur old_file new_file > diff_file

where old_file and new_file are either single files or directories containing
files. The r option supports recursion of a directory tree.

Once the diff file has been created, we can apply it to patch the old file
into the new file:

patch < diff_file

We’ll demonstrate with our test file:

[me@linuxbox ~]$ diff -Naur file1.txt file2.txt > patchfile.txt
[me@linuxbox ~]$ patch < patchfile.txt
patching file file1.txt
[me@linuxbox ~]$ cat file1.txt
b
c
d
e

In this example, we created a diff file named patchfile.txt and then used
the patch program to apply the patch. Note that we did not have to specify a
target file to patch, as the diff file (in unified format) already contains the
filenames in the header. Once the patch is applied, we can see that file1.txt
now matches file2.txt.

Text Processing 253
www.it-ebooks.info

http://www.it-ebooks.info/

patch has a large number of options, and additional utility programs
can be used to analyze and edit patches.

Editing on the Fly
Our experience with text editors has been largely interactive, meaning that
we manually move a cursor around and then type our changes. However,
there are non-interactive ways to edit text as well. It’s possible, for example,
to apply a set of changes to multiple files with a single command.

tr—Transliterate or Delete Characters
The tr program is used to transliterate characters. We can think of this as a
sort of character-based search-and-replace operation. Transliteration is the
process of changing characters from one alphabet to another. For example,
converting characters from lowercase to uppercase is transliteration. We can
perform such a conversion with tr as follows:

[me@linuxbox ~]$ echo "lowercase letters" | tr a-z A-Z
LOWERCASE LETTERS

As we can see, tr operates on standard input and outputs its results on
standard output. tr accepts two arguments: a set of characters to convert
from and a corresponding set of characters to convert to. Character sets may
be expressed in one of three ways:

An enumerated list; for example, ABCDEFGHIJKLMNOPQRSTUVWXYZ.

A character range; for example, A-Z. Note that this method is sometimes
subject to the same issues as other commands (due to the locale colla-
tion order) and thus should be used with caution.

POSIX character classes; for example, [:upper:].

In most cases, the character sets should be of equal length; however, it is
possible for the first set to be larger than the second, particularly if we wish
to convert multiple characters to a single character:

[me@linuxbox ~]$ echo "lowercase letters" | tr [:lower:] A
AAAAAAAAA AAAAAAA

In addition to transliteration, tr allows characters to simply be deleted
from the input stream. Earlier in this chapter, we discussed the problem of
converting MS-DOS text files to Unix-style text. To perform this conversion,
carriage return characters need to be removed from the end of each line.
This can be performed with tr as follows:

tr -d '\r' < dos_file > unix_file

254 Chapter 20

www.it-ebooks.info

http://www.it-ebooks.info/

where dos_file is the file to be converted and unix_file is the result. This
form of the command uses the escape sequence \r to represent the carriage
return character. To see a complete list of the sequences and character
classes tr supports, try

[me@linuxbox ~]$ tr –help

R O T 1 3 : T H E N O T - S O - S E C R E T D E C O D E R R I N G

One amusing use of tr is to perform ROT13 encoding of text. ROT13 is a trivial
type of encryption based on a simple substitution cipher. Calling ROT13 encryp-
tion is being generous; text obfuscation is more accurate. It is used sometimes on
text to obscure potentially offensive content. The method simply moves each
character 13 places up the alphabet. Since this is halfway up the possible 26
characters, performing the algorithm a second time on the text restores it to
its original form. To perform this encoding with tr:

echo "secret text" | tr a-zA-Z n-za-mN-ZA-M
frperg grkg

Performing the same procedure a second time results in the translation:

echo "frperg grkg" | tr a-zA-Z n-za-mN-ZA-M
secret text

A number of email programs and Usenet news readers support ROT13
encoding. Wikipedia contains a good article on the subject: http://en.wikipedia
.org/wiki/ROT13.

tr can perform another trick, too. Using the -s option, tr can “squeeze”
(delete) repeated instances of a character:

[me@linuxbox ~]$ echo "aaabbbccc" | tr -s ab
abccc

Here we have a string containing repeated characters. By specifying
the set ab to tr, we eliminate the repeated instances of the letters in the set,
while leaving the character that is missing from the set (c) unchanged. Note
that the repeating characters must be adjoining. If they are not, the squeez-
ing will have no effect:

[me@linuxbox ~]$ echo "abcabcabc" | tr -s ab
abcabcabc

Text Processing 255
www.it-ebooks.info

http://www.it-ebooks.info/

sed—Stream Editor for Filtering and Transforming Text
The name sed is short for stream editor. It performs text editing on a stream
of text, either a set of specified files or standard input. sed is a powerful and
somewhat complex program (there are entire books about it), so we will not
cover it completely here.

In general, the way sed works is that it is given either a single editing
command (on the command line) or the name of a script file containing
multiple commands, and it then performs these commands upon each line
in the stream of text. Here is a very simple example of sed in action:

[me@linuxbox ~]$ echo "front" | sed 's/front/back/'
back

In this example, we produce a one-word stream of text using echo and
pipe it into sed. sed, in turn, carries out the instruction s/front/back/ upon
the text in the stream and produces the output back as a result. We can also
recognize this command as resembling the substitution (search and replace)
command in vi.

Commands in sed begin with a single letter. In the example above, the
substitution command is represented by the letter s and is followed by the
search and replace strings, separated by the slash character as a delimiter.
The choice of the delimiter character is arbitrary. By convention, the slash
character is often used, but sed will accept any character that immediately
follows the command as the delimiter. We could perform the same com-
mand this way:

[me@linuxbox ~]$ echo "front" | sed 's_front_back_'
back

When the underscore character is used immediately after the command,
it becomes the delimiter. The ability to set the delimiter can be used to
make commands more readable, as we shall see.

Most commands in sed may be preceded by an address, which specifies
which line(s) of the input stream will be edited. If the address is omitted, then
the editing command is carried out on every line in the input stream. The
simplest form of address is a line number. We can add one to our example:

[me@linuxbox ~]$ echo "front" | sed '1s/front/back/'
back

Adding the address 1 to our command causes our substitution to be
performed on the first line of our one-line input stream. We can specify
another number:

[me@linuxbox ~]$ echo "front" | sed '2s/front/back/'
front

256 Chapter 20

www.it-ebooks.info

http://www.it-ebooks.info/

Now we see that the editing is not carried out, because our input stream
does not have a line 2.

Addresses may be expressed in many ways. Table 20-7 lists the most
common ones.

Table 20-7: sed Address Notation

Address Description

n A line number where n is a positive integer

$ The last line

/regexp/ Lines matching a POSIX basic regular expression. Note that the
regular expression is delimited by slash characters. Optionally,
the regular expression may be delimited by an alternate char-
acter, by specifying the expression with \cregexpc, where c is
the alternate character.

addr1,addr2 A range of lines from addr1 to addr2, inclusive. Addresses may
be any of the single address forms above.

first~step Match the line represented by the number first and then each
subsequent line at step intervals. For example, 1~2 refers to
each odd-numbered line, and 5~5 refers to the fifth line and
every fifth line thereafter.

addr1,+n Match addr1 and the following n lines.

addr! Match all lines except addr, which may be any of the forms above.

We’ll demonstrate different kinds of addresses using the distros.txt file
from earlier in this chapter. First, a range of line numbers:

[me@linuxbox ~]$ sed -n '1,5p' distros.txt
SUSE 10.2 12/07/2006
Fedora 10 11/25/2008
SUSE 11.0 06/19/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007

In this example, we print a range of lines, starting with line 1 and con-
tinuing to line 5. To do this, we use the p command, which simply causes
a matched line to be printed. For this to be effective, however, we must
include the option -n (the no autoprint option) to cause sed not to print
every line by default.

Text Processing 257
www.it-ebooks.info

http://www.it-ebooks.info/

Next, we’ll try a regular expression:

[me@linuxbox ~]$ sed -n '/SUSE/p' distros.txt
SUSE 10.2 12/07/2006
SUSE 11.0 06/19/2008
SUSE 10.3 10/04/2007
SUSE 10.1 05/11/2006

By including the slash-delimited regular expression /SUSE/, we are able
to isolate the lines containing it in much the same manner as grep.

Finally, we’ll try negation by adding an exclamation point (!) to the
address:

[me@linuxbox ~]$ sed -n '/SUSE/!p' distros.txt
Fedora 10 11/25/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007
Ubuntu 6.10 10/26/2006
Fedora 7 05/31/2007
Ubuntu 7.10 10/18/2007
Ubuntu 7.04 04/19/2007
Fedora 6 10/24/2006
Fedora 9 05/13/2008
Ubuntu 6.06 06/01/2006
Ubuntu 8.10 10/30/2008
Fedora 5 03/20/2006

Here we see the expected result: all of the lines in the file except the
ones matched by the regular expression.

So far, we’ve looked at two of the sed editing commands, s and p.
Table 20-8 is a more complete list of the basic editing commands.

Table 20-8: sed Basic Editing Commands

Command Description

= Output current line number.

a Append text after the current line.

d Delete the current line.

i Insert text in front of the current line.

p Print the current line. By default, sed prints every line
and edits only lines that match a specified address
within the file. The default behavior can be over-
ridden by specifying the -n option.

q Exit sed without processing any more lines. If the -n
option is not specified, output the current line.

258 Chapter 20

www.it-ebooks.info

http://www.it-ebooks.info/

Table 20-8 (continued)

Command Description

Q Exit sed without processing any more lines.

s/regexp/replacement/ Substitute the contents of replacement wherever
regexp is found. replacement may include the special
character &, which is equivalent to the text matched
by regexp. In addition, replacement may include the
sequences \1 through \9, which are the contents of
the corresponding subexpressions in regexp. For
more about this, see the following discussion on
back references. After the trailing slash following
replacement, an optional flag may be specified to
modify the s command’s behavior.

y/set1/set2 Perform transliteration by converting characters from
set1 to the corresponding characters in set2. Note
that unlike tr, sed requires that both sets be of the
same length.

The s command is by far the most commonly used editing command.
We will demonstrate just some of its power by performing an edit on our
distros.txt file. We discussed before how the date field in distros.txt was not in
a “computer-friendly” format. While the date is formatted MM/DD/YYYY,
it would be better (for ease of sorting) if the format were YYYY-MM-DD. To
perform this change on the file by hand would be both time consuming and
error prone, but with sed, this change can be performed in one step:

[me@linuxbox ~]$ sed 's/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1
-\2/' distros.txt
SUSE 10.2 2006-12-07
Fedora 10 2008-11-25
SUSE 11.0 2008-06-19
Ubuntu 8.04 2008-04-24
Fedora 8 2007-11-08
SUSE 10.3 2007-10-04
Ubuntu 6.10 2006-10-26
Fedora 7 2007-05-31
Ubuntu 7.10 2007-10-18
Ubuntu 7.04 2007-04-19
SUSE 10.1 2006-05-11
Fedora 6 2006-10-24
Fedora 9 2008-05-13
Ubuntu 6.06 2006-06-01
Ubuntu 8.10 2008-10-30
Fedora 5 2006-03-20

Wow! Now that is an ugly-looking command. But it works. In just one
step, we have changed the date format in our file. It is also a perfect example
of why regular expressions are sometimes jokingly referred to as a “write-only”

Text Processing 259
www.it-ebooks.info

http://www.it-ebooks.info/

medium. We can write them, but we sometimes cannot read them. Before
we are tempted to run away in terror from this command, let’s look at how
it was constructed. First, we know that the command will have this basic
structure:

sed 's/regexp/replacement/' distros.txt

Our next step is to figure out a regular expression that will isolate the
date. Since it is in MM/DD/YYYY format and appears at the end of the line,
we can use an expression like this:

[0-9]{2}/[0-9]{2}/[0-9]{4}$

which matches two digits, a slash, two digits, a slash, four digits, and the end
of line. So that takes care of regexp, but what about replacement? To handle that,
we must introduce a new regular expression feature that appears in some
applications that use BRE. This feature is called back references and works like
this: If the sequence \n appears in replacement where n is a number from one
to nine, the sequence will refer to the corresponding subexpression in the
preceding regular expression. To create the subexpressions, we simply
enclose them in parentheses like so:

([0-9]{2})/([0-9]{2})/([0-9]{4})$

We now have three subexpressions. The first contains the month, the
second contains the day of the month, and the third contains the year. Now
we can construct replacement as follows:

\3-\1-\2

which gives us the year, a dash, the month, a dash, and the day.
Now, our command looks like this:

sed 's/([0-9]{2})/([0-9]{2})/([0-9]{4})$/\3-\1-\2/' distros.txt

We have two remaining problems. The first is that the extra slashes in
our regular expression will confuse sed when it tries to interpret the s com-
mand. The second is that since sed, by default, accepts only basic regular
expressions, several of the characters in our regular expression will be taken
as literals, rather than as metacharacters. We can solve both these problems
with a liberal application of backslashes to escape the offending characters:

sed 's/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/' dis
tros.txt

And there you have it!
Another feature of the s command is the use of optional flags that may

follow the replacement string. The most important of these is the g flag, which
instructs sed to apply the search and replace globally to a line, not just to the
first instance, which is the default.

260 Chapter 20

www.it-ebooks.info

http://www.it-ebooks.info/

Here is an example:

[me@linuxbox ~]$ echo "aaabbbccc" | sed 's/b/B/'
aaaBbbccc

We see that the replacement was performed but only to the first instance
of the letter b, while the remaining instances were left unchanged. By adding
the g flag, we are able to change all the instances:

[me@linuxbox ~]$ echo "aaabbbccc" | sed 's/b/B/g'
aaaBBBccc

So far, we have given sed single commands only via the command line.
It is also possible to construct more complex commands in a script file using
the -f option. To demonstrate, we will use sed with our distros.txt file to build
a report. Our report will feature a title at the top, our modified dates, and
all the distribution names converted to uppercase. To do this, we will need
to write a script, so we’ll fire up our text editor and enter the following:

sed script to produce Linux distributions report

1 i\
\
Linux Distributions Report\

s/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/
y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/

We will save our sed script as distros.sed and run it like this:

[me@linuxbox ~]$ sed -f distros.sed distros.txt

Linux Distributions Report

SUSE 10.2 2006-12-07
FEDORA 10 2008-11-25
SUSE 11.0 2008-06-19
UBUNTU 8.04 2008-04-24
FEDORA 8 2007-11-08
SUSE 10.3 2007-10-04
UBUNTU 6.10 2006-10-26
FEDORA 7 2007-05-31
UBUNTU 7.10 2007-10-18
UBUNTU 7.04 2007-04-19
SUSE 10.1 2006-05-11
FEDORA 6 2006-10-24
FEDORA 9 2008-05-13
UBUNTU 6.06 2006-06-01
UBUNTU 8.10 2008-10-30
FEDORA 5 2006-03-20

Text Processing 261
www.it-ebooks.info

http://www.it-ebooks.info/

As we can see, our script produces the desired results, but how does it do
it? Let’s take another look at our script. We’ll use cat to number the lines.

[me@linuxbox ~]$ cat -n distros.sed
 1 # sed script to produce Linux distributions report
 2
 3 1 i\
 4 \
 5 Linux Distributions Report\
 6
 7 s/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/
 8 y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/

Line 1 of our script is a comment. As in many configuration files and
programming languages on Linux systems, comments begin with the # char-
acter and are followed by human-readable text. Comments can be placed
anywhere in the script (though not within commands themselves) and are
helpful to any humans who might need to identify and/or maintain the
script.

Line 2 is a blank line. Like comments, blank lines may be added to
improve readability.

Many sed commands support line addresses. These are used to specify
which lines of the input are to be acted upon. Line addresses may be expressed
as single line numbers, line-number ranges, and the special line number $,
which indicates the last line of input.

Lines 3 through 6 contain text to be inserted at the address 1, the first
line of the input. The i command is followed by the sequence backslash–
carriage return to produce an escaped carriage return, or what is called a
line-continuation character. This sequence, which can be used in many circum-
stances including shell scripts, allows a carriage return to be embedded in
a stream of text without signaling the interpreter (in this case sed) that the
end of the line has been reached. The i command and the commands a
(which appends text) and c (which replaces text) allow multiple lines of
text, providing that each line, except the last, ends with a line-continuation
character. The sixth line of our script is actually the end of our inserted text
and ends with a plain carriage return rather than a line-continuation char-
acter, signaling the end of the i command.

Note: A line-continuation character is formed by a backslash followed immediately by a car-
riage return. No intermediary spaces are permitted.

Line 7 is our search-and-replace command. Since it is not preceded by
an address, each line in the input stream is subject to its action.

Line 8 performs transliteration of the lowercase letters into uppercase
letters. Note that unlike tr, the y command in sed does not support charac-
ter ranges (for example, [a-z]), nor does it support POSIX character classes.
Again, since the y command is not preceded by an address, it applies to
every line in the input stream.

262 Chapter 20

www.it-ebooks.info

http://www.it-ebooks.info/

P E O P L E W H O L I K E S E D A L S O L I K E . . .

sed is a very capable program, able to perform fairly complex editing tasks to
streams of text. It is most often used for simple, one-line tasks rather than long
scripts. Many users prefer other tools for larger tasks. The most popular of
these are awk and perl. These go beyond mere tools like the programs covered
here and extend into the realm of complete programming languages. perl, in
particular, is often used in place of shell scripts for many system-management
and administration tasks, as well as being a very popular medium for web devel-
opment. awk is a little more specialized. Its specific strength is its ability to manipu-
late tabular data. It resembles sed in that awk programs normally process text
files line by line, using a scheme similar to the sed concept of an address fol-
lowed by an action. While both awk and perl are outside the scope of this book,
they are very good tools for the Linux command line user.

aspell—Interactive Spell Checker
The last tool we will look at is aspell, an interactive spellchecker. The aspell
program is the successor to an earlier program named ispell, and it can be
used, for the most part, as a drop-in replacement. While the aspell program
is mostly used by other programs that require spellchecking capability, it can
also be used very effectively as a stand-alone tool from the command line. It
has the ability to intelligently check various type of text files, including HTML
documents, C/C++ programs, email messages, and other kinds of special-
ized texts.

To spellcheck a text file containing simple prose, aspell could be used
like this:

aspell check textfile

where textfile is the name of the file to check. As a practical example, let’s
create a simple text file named foo.txt containing some deliberate spelling
errors:

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox jimped over the laxy dog.

Next we’ll check the file using aspell:

[me@linuxbox ~]$ aspell check foo.txt

As aspell is interactive in the check mode, we will see a screen like this:

The quick brown fox jimped over the laxy dog.

1) jumped 6) wimped
2) gimped 7) camped

Text Processing 263
www.it-ebooks.info

http://www.it-ebooks.info/

3) comped 8) humped
4) limped 9) impede
5) pimped 0) umped
i) Ignore I) Ignore all
r) Replace R) Replace all
a) Add l) Add Lower
b) Abort x) Exit

?

At the top of the display, we see our text with a suspiciously spelled
word highlighted. In the middle, we see 10 spelling suggestions numbered
0 through 9, followed by a list of other possible actions. Finally, at the very
bottom, we see a prompt ready to accept our choice.

If we enter 1, aspell replaces the offending word with the word jumped
and moves on to the next misspelled word, which is laxy. If we select the
replacement lazy, aspell replaces it and terminates. Once aspell has
finished, we can examine our file and see that the misspellings have been
corrected:

[me@linuxbox ~]$ cat foo.txt
The quick brown fox jumped over the lazy dog.

Unless told otherwise via the command-line option --dont-backup, aspell
creates a backup file containing the original text by appending the exten-
sion .bak to the filename.

Showing off our sed editing prowess, we’ll put our spelling mistakes back
in so we can reuse our file:

[me@linuxbox ~]$ sed -i 's/lazy/laxy/; s/jumped/jimped/' foo.txt

The sed option -i tells sed to edit the file “in place,” meaning that rather
than sending the edited output to standard output, it will rewrite the file
with the changes applied. We also see the ability to place more than one
editing command on the line by separating them with a semicolon.

Next, we’ll look at how aspell can handle different kinds of text files.
Using a text editor such as vim (the adventurous may want to try sed), we will
add some HTML markup to our file:

<html>
<head>

<title>Mispelled HTML file</title>
</head>
<body>

<p>The quick brown fox jimped over the laxy dog.</p>
</body>

</html>

Now, if we try to spellcheck our modified file, we run into a problem. If
we do it this way:

[me@linuxbox ~]$ aspell check foo.txt

264 Chapter 20

www.it-ebooks.info

http://www.it-ebooks.info/

we’ll get this:

<html>
 <head>
 <title>Mispelled HTML file</title>
 </head>
 <body>
 <p>The quick brown fox jimped over the laxy dog.</p>
 </body>
</html>

1) HTML 4) Hamel
2) ht ml 5) Hamil
3) ht-ml 6) hotel
i) Ignore I) Ignore all
r) Replace R) Replace all
a) Add l) Add Lower
b) Abort x) Exit

?

aspell will see the contents of the HTML tags as misspelled. This prob-
lem can be overcome by including the -H (HTML) checking-mode option,
like this:

[me@linuxbox ~]$ aspell -H check foo.txt

Our result is this:

<html>
 <head>
 <title>Mispelled HTML file</title>
 </head>
 <body>
 <p>The quick brown fox jimped over the laxy dog.</p>
 </body>
</html>

1) Mi spelled 6) Misapplied
2) Mi-spelled 7) Miscalled
3) Misspelled 8) Respelled
4) Dispelled 9) Misspell
5) Spelled 0) Misled
i) Ignore I) Ignore all
r) Replace R) Replace all
a) Add l) Add Lower
b) Abort x) Exit

?

The HTML is ignored, and only the non-markup portions of the file
are checked. In this mode, the contents of HTML tags are ignored and not
checked for spelling. However, the contents of ALT tags, which benefit from
checking, are checked in this mode.

Text Processing 265
www.it-ebooks.info

http://www.it-ebooks.info/

Note: By default, aspell will ignore URLs and email addresses in text. This behavior can be
overridden with command-line options. It is also possible to specify which markup tags
are checked and skipped. See the aspell man page for details.

Final Note
In this chapter, we have looked at a few of the many command-line tools that
operate on text. In the next chapter, we will look at several more. Admit-
tedly, it may not seem immediately obvious how or why you might use some
of these tools on a day-to-day basis, though we have tried to show some semi-
practical examples of their use. We will find in later chapters that these tools
form the basis of a tool set that is used to solve a host of practical problems.
This will be particularly true when we get into shell scripting, where these
tools will really show their worth.

Extra Credit
There are a few more interesting text-manipulation commands worth invest-
igating. Among these are split (split files into pieces), csplit (split files into
pieces based on context), and sdiff (side-by-side merge of file differences).

266 Chapter 20

www.it-ebooks.info

http://www.it-ebooks.info/

F O R M A T T I N G O U T P U T

In this chapter, we continue our look at text-related
tools, focusing on programs that are used to format
text output rather than change the text itself. These
tools are often used to prepare text for printing, a
subject that we will cover in the next chapter. The
programs that we will cover in this chapter include
the following:

nl—Number lines.

fold—Wrap each line to a specified length.

fmt—A simple text formatter.

pr—Format text for printing.

printf—Format and print data.

groff—A document formatting system.

www.it-ebooks.info

http://www.it-ebooks.info/

Simple Formatting Tools
We’ll look at some of the simple formatting tools first. These are mostly
single-purpose programs, and a bit unsophisticated in what they do, but
they can be used for small tasks and as parts of pipelines and scripts.

nl—Number Lines
The nl program is a rather arcane tool used to perform a simple task: It
numbers lines. In its simplest use, it resembles cat -n:

[me@linuxbox ~]$ nl distros.txt | head
 1 SUSE 10.2 12/07/2006
 2 Fedora 10 11/25/2008
 3 SUSE 11.0 06/19/2008
 4 Ubuntu 8.04 04/24/2008
 5 Fedora 8 11/08/2007
 6 SUSE 10.3 10/04/2007
 7 Ubuntu 6.10 10/26/2006
 8 Fedora 7 05/31/2007
 9 Ubuntu 7.10 10/18/2007
 10 Ubuntu 7.04 04/19/2007

Like cat, nl can accept either multiple filenames as command-line argu-
ments or standard input. However, nl has a number of options and supports
a primitive form of markup to allow more complex kinds of numbering.

nl supports a concept called logical pages when numbering. This allows
nl to reset (start over) the numerical sequence when numbering. Using
options, it is possible to set the starting number to a specific value and, to a
limited extent, set its format. A logical page is further broken down into a
header, body, and footer. Within each of these sections, line numbering may
be reset and/or be assigned a different style. If nl is given multiple files, it
treats them as a single stream of text. Sections in the text stream are indi-
cated by the presence of some rather odd-looking markup added to the
text, as shown in Table 21-1.

Table 21-1: nl Markup

Markup Meaning

\:\:\: Start of logical-page header

\:\: Start of logical-page body

\: Start of logical-page footer

Each of the markup elements in Table 21-1 must appear alone on its
own line. After processing a markup element, nl deletes it from the text
stream.

268 Chapter 21

www.it-ebooks.info

http://www.it-ebooks.info/

Table 21-2 lists the common options for nl.

Table 21-2: Common nl Options

Option Meaning

-b style Set body numbering to style, where style is one of the following:
a Number all lines.
t Number only non-blank lines. This is the default.
n None.
pregexp Number only lines matching basic regular expression
regexp.

-f style Set footer numbering to style. Default is n (none).

-h style Set header numbering to style. Default is n (none).

-i number Set page numbering increment to number. Default is 1.

-n format Set numbering format to format, where format is one of the
following:

ln Left justified, without leading zeros.
rn Right justified, without leading zeros. This is the default.
rz Right justified, with leading zeros.

-p Do not reset page numbering at the beginning of each logical page.

-s string Add string to the end of each line number to create a separator.
Default is a single tab character.

-v number Set first line number of each logical page to number. Default is 1.

-w width Set width of the line number field to width. Default is 6.

Admittedly, we probably won’t be numbering lines that often, but we
can use nl to look at how we can combine multiple tools to perform more
complex tasks. We will build on our work in the previous chapter to pro-
duce a Linux distributions report. Since we will be using nl, it will be useful
to include its header/body/footer markup. To do this, we will add it to the
sed script from the last chapter. Using our text editor, we will change the
script as follows and save it as distros-nl.sed:

sed script to produce Linux distributions report

1 i\
\\:\\:\\:\
\
Linux Distributions Report\
\
Name Ver. Released\
---- ---- --------\
\\:\\:
s/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/

Formatting Output 269
www.it-ebooks.info

http://www.it-ebooks.info/

$ a\
\\:\
\
End Of Report

The script now inserts the nl logical-page markup and adds a footer at
the end of the report. Note that we had to double up the backslashes in our
markup, because sed normally interprets them as escape characters.

Next, we’ll produce our enhanced report by combining sort, sed, and nl:

[me@linuxbox ~]$ sort -k 1,1 -k 2n distros.txt | sed -f distros-nl.sed | nl

 Linux Distributions Report

 Name Ver. Released
 ---- ---- --------

 1 Fedora 5 2006-03-20
 2 Fedora 6 2006-10-24
 3 Fedora 7 2007-05-31
 4 Fedora 8 2007-11-08
 5 Fedora 9 2008-05-13
 6 Fedora 10 2008-11-25
 7 SUSE 10.1 2006-05-11
 8 SUSE 10.2 2006-12-07
 9 SUSE 10.3 2007-10-04
 10 SUSE 11.0 2008-06-19
 11 Ubuntu 6.06 2006-06-01
 12 Ubuntu 6.10 2006-10-26
 13 Ubuntu 7.04 2007-04-19
 14 Ubuntu 7.10 2007-10-18
 15 Ubuntu 8.04 2008-04-24
 16 Ubuntu 8.10 2008-10-30

 End Of Report

Our report is the result of our pipeline of commands. First, we sort the
list by distribution name and version (fields 1 and 2), and then we process
the results with sed, adding the report header (including the logical page
markup for nl) and footer. Finally, we process the result with nl, which, by
default, numbers only the lines of the text stream that belong to the body
section of the logical page.

We can repeat the command and experiment with different options for
nl. Some interesting ones are

nl -n rz

and

nl -w 3 -s ' '

270 Chapter 21

www.it-ebooks.info

http://www.it-ebooks.info/

fold—Wrap Each Line to a Specified Length
Folding is the process of breaking lines of text at a specified width. Like our
other commands, fold accepts either one or more text files or standard input.
If we send fold a simple stream of text, we can see how it works:

[me@linuxbox ~]$ echo "The quick brown fox jumped over the lazy dog." | fold
-w 12
The quick br
own fox jump
ed over the
lazy dog.

Here we see fold in action. The text sent by the echo command is broken
into segments specified by the -w option. In this example, we specify a line
width of 12 characters. If no width is specified, the default is 80 characters.
Notice that the lines are broken regardless of word boundaries. The addi-
tion of the -s option will cause fold to break the line at the last available
space before the line width is reached:

[me@linuxbox ~]$ echo "The quick brown fox jumped over the lazy dog." | fold
-w 12 -s
The quick
brown fox
jumped over
the lazy
dog.

fmt—A Simple Text Formatter
The fmt program also folds text, plus a lot more. It accepts either files or
standard input and performs paragraph formatting on the text stream.
Basically, it fills and joins lines in text while preserving blank lines and
indentation.

To demonstrate, we’ll need some text. Let’s lift some from the fmt
info page:

 `fmt' reads from the specified FILE arguments (or standard input if none
are given), and writes to standard output.

 By default, blank lines, spaces between words, and indentation are
preserved in the output; successive input lines with different
indentation are not joined; tabs are expanded on input and introduced on
output.

 `fmt' prefers breaking lines at the end of a sentence, and tries to avoid
line breaks after the first word of a sentence or before the last word of a
sentence. A "sentence break" is defined as either the end of a paragraph or a
word ending in any of `.?!', followed by two spaces or end of line, ignoring
any intervening parentheses or quotes. Like TeX, `fmt' reads entire
"paragraphs" before choosing line breaks; the algorithm is a variant of that
given by Donald E. Knuth and Michael F. Plass in "Breaking Paragraphs Into
Lines", `Software--Practice & Experience' 11, 11 (November 1981), 1119-1184.

Formatting Output 271
www.it-ebooks.info

http://www.it-ebooks.info/

We’ll copy this text into our text editor and save the file as fmt-info.txt.
Now, let’s say we wanted to reformat this text to fit a 50-character-wide col-
umn. We could do this by processing the file with fmt and the -w option:

[me@linuxbox ~]$ fmt -w 50 fmt-info.txt | head
 `fmt' reads from the specified FILE arguments
 (or standard input if
none are given), and writes to standard output.

 By default, blank lines, spaces between words,
 and indentation are
preserved in the output; successive input lines
with different indentation are not joined; tabs
are expanded on input and introduced on output.

Well, that’s an awkward result. Perhaps we should actually read this text,
since it explains what’s going on:

By default, blank lines, spaces between words, and indentation are
preserved in the output; successive input lines with different indent-
ation are not joined; tabs are expanded on input and introduced
on output.

So, fmt is preserving the indentation of the first line. Fortunately, fmt
provides an option to correct this:

[me@linuxbox ~]$ fmt -cw 50 fmt-info.txt
 `fmt' reads from the specified FILE arguments
(or standard input if none are given), and writes
to standard output.

 By default, blank lines, spaces between words,
and indentation are preserved in the output;
successive input lines with different indentation
are not joined; tabs are expanded on input and
introduced on output.

 `fmt' prefers breaking lines at the end of a
sentence, and tries to avoid line breaks after
the first word of a sentence or before the
last word of a sentence. A "sentence break"
is defined as either the end of a paragraph
or a word ending in any of `.?!', followed

by two spaces or end of line, ignoring any
intervening parentheses or quotes. Like TeX,
`fmt' reads entire "paragraphs" before choosing
line breaks; the algorithm is a variant of
that given by Donald E. Knuth and Michael F.
Plass in "Breaking Paragraphs Into Lines",
`Software--Practice & Experience' 11, 11
(November 1981), 1119-1184.

Much better. By adding the -c option, we now have the desired result.

272 Chapter 21

www.it-ebooks.info

http://www.it-ebooks.info/

fmt has some interesting options, as shown in Table 21-3.

Table 21-3: fmt Options

Option Description

-c Operate in crown margin mode. This preserves the indentation
of the first two lines of a paragraph. Subsequent lines are aligned
with the indentation of the second line.

-p string Format only those lines beginning with the prefix string. After
formatting, the contents of string are prefixed to each reformat-
ted line. This option can be used to format text in source code
comments. For example, any programming language or config-
uration file that uses a # character to delineate a comment could
be formatted by specifying -p '# ' so that only the comments
will be formatted. See the example below.

-s Split-only mode. In this mode, lines will be split only to fit the
specified column width. Short lines will not be joined to fill
lines. This mode is useful when formatting text, such as code,
where joining is not desired.

-u Perform uniform spacing. This will apply traditional “typewriter-
style” formatting to the text. This means a single space between
words and two spaces between sentences. This mode is useful
for removing justification, that is, forced alignment to both the
left and right margins.

-w width Format text to fit within a column width characters wide. The
default is 75 characters. Note: fmt actually formats lines slightly
shorter than the specified width to allow for line balancing.

The -p option is particularly interesting. With it, we can format selected
portions of a file, provided that the lines to be formatted all begin with the
same sequence of characters. Many programming languages use the hash
mark (#) to indicate the beginning of a comment and thus can be format-
ted using this option. Let’s create a file that simulates a program that uses
comments:

[me@linuxbox ~]$ cat > fmt-code.txt
This file contains code with comments.

This line is a comment.
Followed by another comment line.
And another.

This, on the other hand, is a line of code.
And another line of code.
And another.

Formatting Output 273
www.it-ebooks.info

http://www.it-ebooks.info/

Our sample file contains comments, which begin with the string # (a #
followed by a space), and lines of “code,” which do not. Now, using fmt, we
can format the comments and leave the code untouched:

[me@linuxbox ~]$ fmt -w 50 -p '# ' fmt-code.txt
This file contains code with comments.

This line is a comment. Followed by another
comment line. And another.

This, on the other hand, is a line of code.
And another line of code.
And another.

Notice that the adjoining comment lines are joined, while the blank
lines and the lines that do not begin with the specified prefix are preserved.

pr—Format Text for Printing
The pr program is used to paginate text. When printing text, it is often desir-
able to separate the pages of output with several lines of whitespace to pro-
vide a top and bottom margin for each page. Further, this whitespace can be
used to insert a header and footer on each page.

We’ll demonstrate pr by formatting our distros.txt file into a series of very
short pages (only the first two pages are shown):

[me@linuxbox ~]$ pr -l 15 -w 65 distros.txt

2012-12-11 18:27 distros.txt Page 1

SUSE 10.2 12/07/2006
Fedora 10 11/25/2008
SUSE 11.0 06/19/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007

2012-12-11 18:27 distros.txt Page 2

SUSE 10.3 10/04/2007
Ubuntu 6.10 10/26/2006
Fedora 7 05/31/2007
Ubuntu 7.10 10/18/2007
Ubuntu 7.04 04/19/2007

274 Chapter 21

www.it-ebooks.info

http://www.it-ebooks.info/

In this example, we employ the -l option (for page length) and the -w
option (page width) to define a “page” that is 65 characters wide and 15 lines
long. pr paginates the contents of the distros.txt file, separates each page with
several lines of whitespace, and creates a default header containing the file
modification time, filename, and page number. The pr program provides
many options to control page layout. We’ll take a look at more of them in
Chapter 22.

printf—Format and Print Data
Unlike the other commands in this chapter, the printf command is not used
for pipelines (it does not accept standard input), nor does it find frequent
application directly on the command line (it’s used mostly in scripts). So
why is it important? Because it is so widely used.

printf (from the phrase print formatted) was originally developed for the
C programming language and has been implemented in many program-
ming languages, including the shell. In fact, in bash, printf is a built-in.

printf works like this:

printf "format" arguments

The command is given a string containing a format description, which
is then applied to a list of arguments. The formatted result is sent to stan-
dard output. Here is a trivial example:

[me@linuxbox ~]$ printf "I formatted the string: %s\n" foo
I formatted the string: foo

The format string may contain literal text (like I formatted the string:);
escape sequences (such as \n, a newline character); and sequences begin-
ning with the % character, which are called conversion specifications. In the
example above, the conversion specification %s is used to format the string
foo and place it in the command’s output. Here it is again:

[me@linuxbox ~]$ printf "I formatted '%s' as a string.\n" foo
I formatted 'foo' as a string.

As we can see, the %s conversion specification is replaced by the string
foo in the command’s output. The s conversion is used to format string data.
There are other specifiers for other kinds of data. Table 21-4 lists the com-
monly used data types.

Table 21-4: Common printf Data-Type Specifiers

Specifier Description

d Format a number as a signed decimal integer.

f Format and output a floating point number.

Formatting Output 275

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Table 21-4 (continued)

Specifier Description

o Format an integer as an octal number.

s Format a string.

x Format an integer as a hexadecimal number using lowercase a–f
where needed.

X Same as x, but use uppercase letters.

% Print a literal % symbol (i.e., specify “%%”).

We’ll demonstrate the effect each of the conversion specifiers on the
string 380 :

[me@linuxbox ~]$ printf "%d, %f, %o, %s, %x, %X\n" 380 380 380 380 380 380
380, 380.000000, 574, 380, 17c, 17C

Since we specified six conversion specifiers, we must also supply six
arguments for printf to process. The six results show the effect of each
specifier.

Several optional components may be added to the conversion specifier
to adjust its output. A complete conversion specification may consist of the
following:

%[flags][width][.precision]conversion_specification

Multiple optional components, when used, must appear in the order spe-
cified above to be properly interpreted. Table 21-5 describes each component.

Table 21-5: printf Conversion-Specification Components

Component Description

flags There are five different flags:

Use the alternate format for output. This varies by data
type. For o (octal number) conversion, the output is prefixed
with 0 (zero). For x and X (hexadecimal number) conversions,
the output is prefixed with 0x or 0X respectively.
0 (zero) Pad the output with zeros. This means that the field
will be filled with leading zeros, as in 000380.
- (dash) Left-align the output. By default, printf right-aligns
output.
 (space) Produce a leading space for positive numbers.
+ (plus sign) Sign positive numbers. By default, printf signs
only negative numbers.

276 Chapter 21

www.it-ebooks.info

http://www.it-ebooks.info/

Table 21-5 (continued)

Component Description

width A number specifying the minimum field width

.precision For floating-point numbers, specify the number of digits of
precision to be output after the decimal point. For string
conversion, precision specifies the number of characters to
output.

Table 21-6 lists some examples of different formats in action.

Table 21-6: print Conversion Specification Examples

Argument Format Result Notes

380 "%d" 380 Simple formatting of an integer

380 "%#x" 0x17c Integer formatted as a hexa-
decimal number using the
alternate format flag

380 "%05d" 00380 Integer formatted with leading
zeros (padding) and a minimum
field width of five characters

380 "%05.5f" 380.00000 Number formatted as a floating-
point number with padding and
5 decimal places of precision.
Since the specified minimum
field width (5) is less than the
actual width of the formatted
number, the padding has no
effect.

380 "%010.5f" 0380.00000 Increasing the minimum field
width to 10 makes the padding
visible.

380 "%+d" +380 The + flag signs a positive
number.

380 "%-d" 380 The - flag left-aligns the
formatting.

abcdefghijk "%5s" abcedfghijk A string is formatted with a
minimum field width.

abcdefghijk "%.5s" abcde By applying precision to a
string, it is truncated.

Formatting Output 277
www.it-ebooks.info

http://www.it-ebooks.info/

Again, printf is used mostly in scripts, where it is employed to format
tabular data, rather than on the command line directly. But we can still
show how it can be used to solve various formatting problems. First, let’s
output some fields separated by tab characters:

[me@linuxbox ~]$ printf "%s\t%s\t%s\n" str1 str2 str3
str1 str2 str3

By inserting \t (the escape sequence for a tab), we achieve the desired
effect. Next, some numbers with neat formatting:

[me@linuxbox ~]$ printf "Line: %05d %15.3f Result: %+15d\n" 1071 3.14156295
32589
Line: 01071 3.142 Result: +32589

This shows the effect of minimum field width on the spacing of the
fields. Or how about formatting a tiny web page?

[me@linuxbox ~]$ printf "<html>\n\t<head>\n\t\t<title>%s</title>\n\t</head>
\n\t<body>\n\t\t<p>%s</p>\n\t</body>\n</html>\n" "Page Title" "Page Content"
<html>

<head>
<title>Page Title</title>

</head>
<body>

<p>Page Content</p>
</body>

</html>

Document Formatting Systems
So far, we have examined the simple text-formatting tools. These are good
for small, simple tasks, but what about larger jobs? One of the reasons that
Unix became a popular operating system among technical and scientific
users (aside from providing a powerful multitasking, multiuser environment
for all kinds of software development) is that it offered tools that could be
used to produce many types of documents, particularly scientific and aca-
demic publications. In fact, as the GNU documentation describes, docu-
ment preparation was instrumental to the development of Unix:

The first version of UNIX was developed on a PDP-7 which was
sitting around Bell Labs. In 1971 the developers wanted to get a
PDP-11 for further work on the operating system. In order to justify
the cost for this system, they proposed that they would implement
a document formatting system for the AT&T patents division. This
first formatting program was a reimplementation of McIllroy’s roff,
written by J.F. Ossanna.

278 Chapter 21

www.it-ebooks.info

http://www.it-ebooks.info/

The roff Family and TEX

Two main families of document formatters dominate the field: those descended
from the original roff program, including nroff and troff, and those based
on Donald Knuth’s TEX (pronounced “tek”) typesetting system. And yes,
the dropped “E” in the middle is part of its name.

The name roff is derived from the term run off as in, “I’ll run off a
copy for you.” The nroff program is used to format documents for output
to devices that use monospaced fonts, such as character terminals and
typewriter-style printers. At the time of its introduction, this included nearly
all printing devices attached to computers. The later troff program formats
documents for output on typesetters, devices used to produce “camera-ready”
type for commercial printing. Most computer printers today are able to sim-
ulate the output of typesetters. The roff family also includes some other pro-
grams that are used to prepare portions of documents. These include eqn
(for mathematical equations) and tbl (for tables).

The TEX system (in stable form) first appeared in 1989 and has, to
some degree, displaced troff as the tool of choice for typesetter output. We
won’t be covering TEX here, due both to its complexity (there are entire
books about it) and to the fact that it is not installed by default on most
modern Linux systems.

Note: For those interested in installing TEX, check out the texlive package, which can be
found in most distribution repositories, and the LyX graphical content editor.

groff—A Document Formatting System
groff is a suite of programs containing the GNU implementation of troff.
It also includes a script that is used to emulate nroff and the rest of the roff
family as well.

While roff and its descendants are used to make formatted documents,
they do it in a way that is rather foreign to modern users. Most documents
today are produced using word processors that are able to perform both the
composition and layout of a document in a single step. Prior to the advent
of the graphical word processor, documents were often produced in a two-
step process involving the use of a text editor to perform composition and a
processor, such as troff, to apply the formatting. Instructions for the format-
ting program were embedded in the composed text through the use of a
markup language. The modern analog for such a process is the web page,
which is composed using a text editor of some kind and then rendered by
a web browser using HTML as the markup language to describe the final
page layout.

We’re not going to cover groff in its entirety, as many elements of its
markup language deal with rather arcane details of typography. Instead we
will concentrate on one of its macro packages that remains in wide use. These
macro packages condense many of its low-level commands into a smaller set
of high-level commands that make using groff much easier.

Formatting Output 279
www.it-ebooks.info

http://www.it-ebooks.info/

For a moment, let’s consider the humble man page. It lives in the
/usr/share/man directory as a gzip-compressed text file. If we were to exam-
ine its uncompressed contents, we would see the following (the man page
for ls in section 1 is shown):

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | head
.\" DO NOT MODIFY THIS FILE! It was generated by help2man 1.35.
.TH LS "1" "April 2008" "GNU coreutils 6.10" "User Commands"
.SH NAME
ls \- list directory contents
.SH SYNOPSIS
.B ls
[\fIOPTION\fR]... [\fIFILE\fR]...
.SH DESCRIPTION
.\" Add any additional description here
.PP

Compared to the man page in its normal presentation, we can begin to
see a correlation between the markup language and its results:

[me@linuxbox ~]$ man ls | head
LS(1) User Commands LS(1)

NAME
 ls - list directory contents

SYNOPSIS
 ls [OPTION]... [FILE]...

This is of interest because man pages are rendered by groff, using the
mandoc macro package. In fact, we can simulate the man command with this
pipeline.

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | groff -mandoc -T ascii |
head
LS(1) User Commands LS(1)

NAME
 ls - list directory contents

SYNOPSIS
 ls [OPTION]... [FILE]...

Here we use the groff program with the options set to specify the mandoc
macro package and the output driver for ASCII. groff can produce output
in several formats. If no format is specified, PostScript is output by default:

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | groff -mandoc | head
%!PS-Adobe-3.0
%%Creator: groff version 1.18.1
%%CreationDate: Thu Feb 2 13:44:37 2012
%%DocumentNeededResources: font Times-Roman

280 Chapter 21

www.it-ebooks.info

http://www.it-ebooks.info/

%%+ font Times-Bold
%%+ font Times-Italic
%%DocumentSuppliedResources: procset grops 1.18 1
%%Pages: 4
%%PageOrder: Ascend
%%Orientation: Portrait

PostScript is a page-description language that is used to describe the
contents of a printed page to a typesetter-like device. We can take the out-
put of our command and store it to a file (assuming that we are using a
graphical desktop with a Desktop directory):

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | groff -mandoc > ~/Desktop
/foo.ps

An icon for the output file should appear on the desktop. By double-
clicking the icon, a page viewer should start up and reveal the file in its
rendered form (Figure 21-1).

Figure 21-1: Viewing PostScript output with a page viewer in GNOME

What we see is a nicely typeset man page for ls! In fact, it’s possible to
convert the PostScript file into a PDF (Portable Document Format) file with this
command:

[me@linuxbox ~]$ ps2pdf ~/Desktop/foo.ps ~/Desktop/ls.pdf

The ps2pdf program is part of the ghostscript package, which is installed
on most Linux systems that support printing.

Formatting Output 281
www.it-ebooks.info

http://www.it-ebooks.info/

Note: Linux systems often include many command line-programs for file-format conversion.
They are often named using the convention format2format. Try using the command
ls /usr/bin/*[[:alpha:]]2[[:alpha:]]* to identify them. Also try searching for pro-
grams named formattoformat.

For our last exercise with groff, we will revisit our old friend distros.txt.
This time, we will use the tbl program, which is used to format tables, to
typeset our list of Linux distributions. To do this, we are going to use our
earlier sed script to add markup to a text stream that we will feed to groff.

First, we need to modify our sed script to add the necessary requests that
tbl requires. Using a text editor, we will change distros.sed to the following:

sed script to produce Linux distributions report

1 i\
.TS\
center box;\
cb s s\
cb cb cb\
l n c.\
Linux Distributions Report\
=\
Name Version Released\
_
s/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/
$ a\
.TE

Note that for the script to work properly, care must been taken to see
that the words Name Version Released are separated by tabs, not spaces. We’ll
save the resulting file as distros-tbl.sed. tbl uses the .TS and .TE requests to
start and end the table. The rows following the .TS request define global
properties of the table, which, for our example, are centered horizontally
on the page and surrounded by a box. The remaining lines of the definition
describe the layout of each table row. Now, if we run our report-generating
pipeline again with the new sed script, we’ll get the following :

[me@linuxbox ~]$ sort -k 1,1 -k 2n distros.txt | sed -f distros-tbl.sed | groff
-t -T ascii 2>/dev/null
 +------------------------------+
 | Linux Distributions Report |
 +------------------------------+
 | Name Version Released |
 +------------------------------+
 |Fedora 5 2006-03-20 |
 |Fedora 6 2006-10-24 |
 |Fedora 7 2007-05-31 |
 |Fedora 8 2007-11-08 |
 |Fedora 9 2008-05-13 |
 |Fedora 10 2008-11-25 |
 |SUSE 10.1 2006-05-11 |
 |SUSE 10.2 2006-12-07 |
 |SUSE 10.3 2007-10-04 |
 |SUSE 11.0 2008-06-19 |
 |Ubuntu 6.06 2006-06-01 |

282 Chapter 21

www.it-ebooks.info

http://www.it-ebooks.info/

 |Ubuntu 6.10 2006-10-26 |
 |Ubuntu 7.04 2007-04-19 |
 |Ubuntu 7.10 2007-10-18 |
 |Ubuntu 8.04 2008-04-24 |
 |Ubuntu 8.10 2008-10-30 |
 +------------------------------+

Adding the -t option to groff instructs it to preprocess the text stream
with tbl. Likewise, the -T option is used to output to ASCII rather than to
the default output medium, PostScript.

The format of the output is the best we can expect if we are limited to
the capabilities of a terminal screen or typewriter-style printer. If we specify
PostScript output and graphically view the resulting output, we get a much
more satisfying result (see Figure 21-2).

[me@linuxbox ~]$ sort -k 1,1 -k 2n distros.txt | sed -f distros-tbl.sed | groff
-t > ~/Desktop/foo.ps

Figure 21-2: Viewing the finished table

Final Note
Given that text is so central to the character of Unix-like operating systems,
it makes sense that there would be many tools that are used to manipulate
and format text. As we have seen, there are! The simple formatting tools like
fmt and pr will find many uses in scripts that produce short documents, while
groff (and friends) can be used to write books. We may never write a tech-
nical paper using command-line tools (though many people do!), but it’s
good to know that we could.

Formatting Output 283
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

P R I N T I N G

After spending the last couple of chapters manipulat-
ing text, it’s time to put that text on paper. In this chap-
ter, we’ll look at the command-line tools that are used
to print files and control printer operation. We won’t be
looking at how to configure printing, as that varies from distribution to distri-
bution and is usually set up automatically during installation. Note that we will
need a working printer configuration to perform the exercises in this chapter.

We will discuss the following commands:

pr—Convert text files for printing.

lpr—Print files.

lp—Print files (System V).

a2ps—Format files for printing on a PostScript printer.

lpstat—Show printer status information.

lpq—Show printer queue status.

lprm—Cancel print jobs.

cancel—Cancel print jobs (System V).

www.it-ebooks.info

http://www.it-ebooks.info/

A Brief History of Printing
To fully understand the printing features found in Unix-like operating sys-
tems, we must first learn some history. Printing on Unix-like systems goes way
back to the beginning of the operating system itself. In those days, printers
and how they were used were much different from how they are today.

Printing in the Dim Times
Like the computers themselves, printers in the pre-PC era tended to be large,
expensive, and centralized. The typical computer user of 1980 worked at
a terminal connected to a computer some distance away. The printer was
located near the computer and was under the watchful eyes of the com-
puter’s operators.

When printers were expensive and centralized, as they often were in the
early days of Unix, it was common practice for many users to share a printer.
To identify print jobs belonging to a particular user, a banner page displaying
the name of the user was often printed at the beginning of each print job.
The computer support staff would then load up a cart containing the day’s
print jobs and deliver them to the individual users.

Character-Based Printers
The printer technology of the ’80s was very different in two respects. First,
printers of that period were almost always impact printers. Impact printers use
a mechanical mechanism that strikes a ribbon against the paper to form
character impressions on the page. Two of the popular technologies of that
time were daisy-wheel printing and dot-matrix printing.

The second, and more important, characteristic of early printers was
that they used a fixed set of characters that were intrinsic to the device itself.
For example, a daisy-wheel printer could print only the characters actually
molded into the petals of the daisy wheel. This made the printers much like
high-speed typewriters. As with most typewriters, they printed using mono-
spaced (fixed-width) fonts. This means that each character has the same
width. Printing was done at fixed positions on the page, and the printable
area of a page contained a fixed number of characters. Most printers prin-
ted 10 characters per inch (CPI) horizontally and 6 lines per inch (LPI) ver-
tically. Using this scheme, a US-letter sheet of paper is 85 characters wide
and 66 lines high. Taking into account a small margin on each side, 80 char-
acters was considered the maximum width of a print line. This explains why
terminal displays (and our terminal emulators) are normally 80 characters
wide. It provides a WYSIWYG (What You See Is What You Get) view of printed
output, using a monospaced font.

Data is sent to a typewriter-like printer in a simple stream of bytes con-
taining the characters to be printed. For example, to print an a, the ASCII
character code 97 is sent. In addition, the low-numbered ASCII control codes
provided a means of moving the printer’s carriage and paper, using codes

286 Chapter 22

www.it-ebooks.info

http://www.it-ebooks.info/

for carriage return, line feed, form feed, and so on. Using the control codes,
it’s possible to achieve some limited font effects, such as boldface, by having
the printer print a character, backspace, and print the character again to get
a darker print impression on the page. We can actually witness this if we use
nroff to render a man page and examine the output using cat -A:

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | nroff -man | cat -A | head
LS(1) User Commands LS(1)
$
$
$
N^HNA^HAM^HME^HE$
 ls - list directory contents$
$
S^HSY^HYN^HNO^HOP^HPS^HSI^HIS^HS$
 l^Hls^Hs [_^HO_^HP_^HT_^HI_^HO_^HN]... [_^HF_^HI_^HL_^HE]...$

The ^H (CTRL-H) characters are the backspaces used to create the bold-
face effect. Likewise, we can also see a backspace/underscore sequence used
to produce underlining.

Graphical Printers
The development of GUIs led to major changes in printer technology.
As computers moved to more picture-based displays, printing moved from
character-based to graphical techniques. This was facilitated by the advent
of the low-cost laser printer, which, instead of printing fixed characters, could
print tiny dots anywhere in the printable area of the page. This made print-
ing proportional fonts (like those used by typesetters), and even photo-
graphs and high-quality diagrams, possible.

However, moving from a character-based scheme to a graphical scheme
presented a formidable technical challenge. Here’s why: The number of
bytes needed to fill a page using a character-based printer can be calculated
this way (assuming 60 lines per page, each containing 80 characters): 60 × 80
= 4,800 bytes.

In comparison, a 300-dot-per-inch (DPI) laser printer (assuming an
8-by-10-inch print area per page) requires (8 × 300) × (10 × 300) ÷ 8 =
900,000 bytes.

Many of the slow PC networks simply could not handle the nearly
1 megabyte of data required to print a full page on a laser printer, so it
was clear that a clever invention was needed.

That invention turned out to be the page-description language. A page-
description language (PDL) is a programming language that describes the con-
tents of a page. Basically it says, “Go to this position, draw the character a in
10-point Helvetica, go to this position. . . .” until everything on the page is
described. The first major PDL was PostScript from Adobe Systems, which is
still in wide use today. The PostScript language is a complete programming
language tailored for typography and other kinds of graphics and imaging.
It includes built-in support for 35 standard, high-quality fonts, plus the ability

Printing 287
www.it-ebooks.info

http://www.it-ebooks.info/

to accept additional font definitions at runtime. At first, support for Post-
Script was built into the printers themselves. This solved the data transmission
problem. While the typical PostScript program was verbose in comparison
to the simple byte stream of character-based printers, it was much smaller
than the number of bytes required to represent the entire printed page.

A PostScript printer accepted a PostScript program as input. The printer
contained its own processor and memory (oftentimes making the printer a
more powerful computer than the computer to which it was attached) and
executed a special program called a PostScript interpreter, which read the incom-
ing PostScript program and rendered the results into the printer’s internal
memory, thus forming the pattern of bits (dots) that would be transferred
to the paper. The generic name for this process of rendering something
into a large bit pattern (called a bitmap) is raster image processor, or RIP.

As the years went by, both computers and networks became much
faster. This allowed the RIP to move from the printer to the host computer,
which, in turn, permitted high-quality printers to be much less expensive.

Many printers today still accept character-based streams, but many
low-cost printers do not. They rely on the host computer’s RIP to provide a
stream of bits to print as dots. There are still some PostScript printers, too.

Printing with Linux
Modern Linux systems employ two software suites to perform and manage
printing. The first, CUPS (Common Unix Printing System), provides print
drivers and print-job management; the second, Ghostscript, a PostScript
interpreter, acts as a RIP.

CUPS manages printers by creating and maintaining print queues.
As we discussed in our brief history lesson, Unix printing was originally
designed to manage a centralized printer shared by multiple users. Since
printers are slow by nature, compared to the computers that are feeding
them, printing systems need a way to schedule multiple print jobs and keep
things organized. CUPS also has the ability to recognize different types of
data (within reason) and can convert files to a printable form.

Preparing Files for Printing
As command line users, we are mostly interested in printing text, though it
is certainly possible to print other data formats as well.

pr—Convert Text Files for Printing
We looked at pr a little in the previous chapter. Now we will examine some of
its many options used in conjunction with printing. In our history of printing,
we saw that character-based printers use monospaced fonts, resulting in

288 Chapter 22

www.it-ebooks.info

http://www.it-ebooks.info/

fixed numbers of characters per line and lines per page. pr is used to adjust
text to fit on a specific page size, with optional page headers and margins.
Table 22-1 summarizes the most commonly used options.

Table 22-1: Common pr Options

Option Description

+first[:last] Output a range of pages starting with first and, optionally,
ending with last.

-columns Organize the content of the page into the number of columns
specified by columns.

-a By default, multicolumn output is listed vertically. By adding
the -a (across) option, content is listed horizontally.

-d Double-space output.

-D format Format the date displayed in page headers using format. See
the man page for the date command for a description of the
format string.

-f Use form feeds rather than carriage returns to separate pages.

-h header In the center portion of the page header, use header rather the
name of the file being processed.

-l length Set page length to length. Default is 66 lines (US letter at
6 lines per inch).

-n Number lines.

-o offset Create a left margin offset characters wide.

-w width Set page width to width. Default is 72 characters.

pr is often used in pipelines as a filter. In this example, we will produce
a directory listing of /usr/bin and format it into paginated, three-column
output using pr:

[me@linuxbox ~]$ ls /usr/bin | pr -3 -w 65 | head

2012-02-18 14:00 Page 1
[apturl bsd-write
411toppm ar bsh
a2p arecord btcflash
a2ps arecordmidi bug-buddy
a2ps-lpr-wrapper ark buildhash

Printing 289
www.it-ebooks.info

http://www.it-ebooks.info/

Sending a Print Job to a Printer
The CUPS printing suite supports two methods of printing historically used
on Unix-like systems. One method, called Berkeley or LPD (used in the
Berkeley Software Distribution version of Unix), uses the lpr program; the
other method, called SysV (from the System V version of Unix), uses the lp
program. Both programs do roughly the same thing. Choosing one over the
other is a matter of personal taste.

lpr—Print Files (Berkeley Style)
The lpr program can be used to send files to the printer. It may also be used
in pipelines, as it accepts standard input. For example, to print the results of
our multicolumn directory listing above, we could do this:

[me@linuxbox ~]$ ls /usr/bin | pr -3 | lpr

The report would be sent to the system’s default printer. To send the
file to a different printer, the -P option can used like this:

lpr -P printer_name

where printer_name is the name of the desired printer. To see a list of print-
ers known to the system:

[me@linuxbox ~]$ lpstat -a

Note: Many Linux distributions allow you to define a “printer” that outputs files in PDF,
rather than printing on the physical printer. This is very handy for experimenting
with printing commands. Check your printer configuration program to see if it sup-
ports this configuration. On some distributions, you may need to install additional
packages (such as cups-pdf) to enable this capability.

Table 22-2 shows some of the common options for lpr.

Table 22-2: Common lpr Options

Option Description

-# number Set number of copies to number.

-p Print each page with a shaded header with the date, time, job
name, and page number. This so-called “pretty print” option
can be used when printing text files.

-P printer Specify the name of the printer used for output. If no printer is
specified, the system’s default printer is used.

-r Delete files after printing. This would be useful for programs
that produce temporary printer-output files.

290 Chapter 22

www.it-ebooks.info

http://www.it-ebooks.info/

lp—Print Files (System V Style)
Like lpr, lp accepts either files or standard input for printing. It differs from
lpr in that it supports a different (and slightly more sophisticated) option
set. Table 22-3 lists the common options.

Table 22-3: Common lp Options

Option Description

-d printer Set the destination (printer) to printer. If no d option
is specified, the system default printer is used.

-n number Set the number of copies to number.

-o landscape Set output to landscape orientation.

-o fitplot Scale the file to fit the page. This is useful when
printing images, such as JPEG files.

-o scaling=number Scale file to number. The value of 100 fills the page.
Values less than 100 are reduced, while values
greater than 100 cause the file to be printed across
multiple pages.

-o cpi=number Set the output characters per inch to number. Default
is 10.

-o lpi=number Set the output lines per inch to number. Default is 6.

-o page-bottom=points
-o page-left=points
-o page-right=points
-o page-top=points

Set the page margins. Values are expressed in
points, a unit of typographic measurement. There
are 72 points to an inch.

-P pages Specify the list of pages. pages may be expressed
as a comma-separated list and/or a range—for
example 1,3,5,7-10.

We’ll produce our directory listing again, this time printing 12 CPI and
8 LPI with a left margin of one-half inch. Note that we have to adjust the pr
options to account for the new page size:

[me@linuxbox ~]$ ls /usr/bin | pr -4 -w 90 -l 88 | lp -o page-left=36 -o cpi=
12 -o lpi=8

This pipeline produces a four-column listing using smaller type than the
default. The increased number of characters per inch allows us to fit more
columns on the page.

Printing 291
www.it-ebooks.info

http://www.it-ebooks.info/

Another Option: a2ps
The a2ps program is interesting. As we can surmise from its name, it’s a
format conversion program, but it’s also much more. Its name originally
meant ASCII to PostScript, and it was used to prepare text files for printing
on PostScript printers. Over the years, however, the capabilities of the pro-
gram have grown, and now its name means Anything to PostScript. While its
name suggests a format-conversion program, it is actually a printing pro-
gram. It sends its default output, rather than standard output, to the sys-
tem’s default printer. The program’s default behavior is that of a “pretty
printer,” meaning that it improves the appearance of output. We can use
the program to create a PostScript file on our desktop:

[me@linuxbox ~]$ ls /usr/bin | pr -3 -t | a2ps -o ~/Desktop/ls.ps -L 66
[stdin (plain): 11 pages on 6 sheets]
[Total: 11 pages on 6 sheets] saved into the file `/home/me/Desktop/ls.ps'

Here we filter the stream with pr, using the -t option (omit headers and
footers) and then, with a2ps, specifying an output file (-o option) and 66 lines
per page (-L option) to match the output pagination of pr. If we view the
resulting file with a suitable file viewer, we will see the output shown in
Figure 22-1.

Figure 22-1: Viewing a2ps output

292 Chapter 22

www.it-ebooks.info

http://www.it-ebooks.info/

As we can see, the default output layout is “two up” format. This causes
the contents of two pages to be printed on each sheet of paper. a2ps applies
nice page headers and footers, too.

a2ps has a lot of options. Table 22-4 summarizes them.

Table 22-4: a2ps Options

Option Description

--center-title text Set center page title to text.

--columns number Arrange pages into number columns. Default is 2.

--footer text Set page footer to text.

--guess Report the types of files given as arguments. Since
a2ps tries to convert and format all types of data,
this option can be useful for predicting what a2ps
will do when given a particular file.

--left-footer text Set left-page footer to text.

--left-title text Set left-page title to text.

--line-numbers=interval Number lines of output every interval lines.

--list=defaults Display default settings.

--list=topic Display settings for topic, where topic is one of
the following: delegations (external programs that
will be used to convert data), encodings, features,
variables, media (paper sizes and the like), ppd
(PostScript printer descriptions), printers, prologues
(portions of code that are prefixed to normal
output), stylesheets, or user options.

--pages range Print pages in range.

--right-footer text Set right-page footer to text.

--right-title text Set right-page title to text.

--rows number Arrange pages into number rows. Default is 1.

-B No page headers.

-b text Set page header to text.

-f size Use size point font.

-l number Set characters per line to number. This and the -L
option (below) can be used to make files pagi-
nated with other programs, such as pr, fit correctly
on the page.

Printing 293

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Table 22-4 (continued)

Option Description

-L number Set lines per page to number.

-M name Use media name—for example, A4.

-n number Output number copies of each page.

-o file Send output to file. If file is specified as -, use
standard output.

-P printer Use printer. If a printer is not specified, the system
default printer is used.

-R Portrait orientation

-r Landscape orientation

-T number Set tab stops to every number characters.

-u text Underlay (watermark) pages with text.

This is just a summary. a2ps has several more options.

Note: a2ps is still in active development. During my testing, I noticed different behavior on
various distributions. On CentOS 4, output always went to standard output by default.
On CentOS 4 and Fedora 10, output defaulted to A4 media, despite the program being
configured to use letter-size media by default. I could overcome these issues by explicitly
specifying the desired option. On Ubuntu 8.04, a2ps performed as documented.

Also note that there is another output formatter that is useful for converting text
into PostScript. Called enscript, it can perform many of the same kinds of formatting
and printing tricks, but unlike a2ps, it accepts only text input.

Monitoring and Controlling Print Jobs
As Unix printing systems are designed to handle multiple print jobs from
multiple users, CUPS is designed to do the same. Each printer is given a
print queue, where jobs are parked until they can be spooled to the printer.
CUPS supplies several command-line programs that are used to manage
printer status and print queues. Like the lpr and lp programs, these man-
agement programs are modeled after the corresponding programs from
the Berkeley and System V printing systems.

lpstat—Display Print System Status
The lpstat program is useful for determining the names and availability of
printers on the system. For example, if we had a system with both a physical

294 Chapter 22

www.it-ebooks.info

http://www.it-ebooks.info/

printer (named printer) and a PDF virtual printer (named PDF), we could
check their status like this:

[me@linuxbox ~]$ lpstat -a
PDF accepting requests since Mon 05 Dec 2011 03:05:59 PM EST
printer accepting requests since Tue 21 Feb 2012 08:43:22 AM EST

Further, we could determine a more detailed description of the print
system configuration this way:

[me@linuxbox ~]$ lpstat -s
system default destination: printer
device for PDF: cups-pdf:/
device for printer: ipp://print-server:631/printers/printer

In this example, we see that printer is the system’s default printer and
that it is a network printer using Internet Printing Protocol (ipp://)
attached to a system named print-server.

The commonly used options are described in Table 22-5.

Table 22-5: Common lpstat Options

Option Description

-a [printer...] Display the state of the printer queue for printer. Note
that this is the status of the printer queue’s ability to
accept jobs, not the status of the physical printers. If no
printers are specified, all print queues are shown.

-d Display the name of the system’s default printer.

-p [printer...] Display the status of the specified printer. If no
printers are specified, all printers are shown.

-r Display the status of the print server.

-s Display a status summary.

-t Display a complete status report.

lpq—Display Printer Queue Status
To see the status of a printer queue, the lpq program is used. This allows
us to view the status of the queue and the print jobs it contains. Here is an
example of an empty queue for a system default printer named printer :

[me@linuxbox ~]$ lpq
printer is ready
no entries

Printing 295
www.it-ebooks.info

http://www.it-ebooks.info/

If we do not specify a printer (using the -P option), the system’s default
printer is shown. If we send a job to the printer and then look at the queue,
we will see it listed:

[me@linuxbox ~]$ ls *.txt | pr -3 | lp
request id is printer-603 (1 file(s))
[me@linuxbox ~]$ lpq
printer is ready and printing
Rank Owner Job File(s) Total Size
active me 603 (stdin) 1024 bytes

lprm and cancel—Cancel Print Jobs
CUPS supplies two programs used to terminate print jobs and remove them
from the print queue. One is Berkeley style (lprm), and the other is System V
(cancel). They differ slightly in the options they support but do basically the
same thing. Using our print job above as an example, we could stop the job
and remove it this way:

[me@linuxbox ~]$ cancel 603
[me@linuxbox ~]$ lpq
printer is ready
no entries

Each command has options for removing all the jobs belonging to a
particular user, particular printer, and multiple job numbers. Their respec-
tive man pages have all the details.

296 Chapter 22

www.it-ebooks.info

http://www.it-ebooks.info/

C O M P I L I N G P R O G R A M S

In this chapter, we will look at how to build programs
by compiling source code. The availability of source
code is the essential freedom that makes Linux possible.
The entire ecosystem of Linux development relies on
free exchange between developers. For many desktop
users, compiling is a lost art. It used to be quite common, but today, distri-
bution providers maintain huge repositories of precompiled binaries, ready
to download and use. At the time of this writing, the Debian repository (one
of the largest of any of the distributions) contains almost 23,000 packages.

So why compile software? There are two reasons:

Availability. Despite the number of precompiled programs in distribu-
tion repositories, some distributions may not include all the desired
applications. In this case, the only way to get the desired program is
to compile it from source.

Timeliness. While some distributions specialize in cutting-edge ver-
sions of programs, many do not. This means that in order to have the
very latest version of a program, compiling is necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

Compiling software from source code can become very complex and
technical, well beyond the reach of many users. However, many compiling
tasks are quite easy and involve only a few steps. It all depends on the pack-
age. We will look at a very simple case in order to provide an overview of
the process and as a starting point for those who wish to undertake further
study.

We will introduce one new command:

make—Utility to maintain programs.

What Is Compiling?
Simply put, compiling is the process of translating source code (the human-
readable description of a program written by a programmer) into the native
language of the computer’s processor.

The computer’s processor (or CPU) works at a very elemental level,
executing programs in what is called machine language. This is a numeric
code that describes very small operations, such as “add this byte,” “point to
this location in memory,” or “copy this byte.” Each of these instructions is
expressed in binary (ones and zeros). The earliest computer programs were
written using this numeric code, which may explain why programmers who
wrote it were said to smoke a lot, drink gallons of coffee, and wear thick
glasses.

This problem was overcome by the advent of assembly language, which
replaced the numeric codes with (slightly) easier to use character mnemonics
such as CPY (for copy) and MOV (for move). Programs written in assembly
language are processed into machine language by a program called an
assembler. Assembly language is still used today for certain specialized pro-
gramming tasks, such as device drivers and embedded systems.

We next come to what are called high-level programming languages. They
are called this because they allow the programmer to be less concerned
with the details of what the processor is doing and more with solving the
problem at hand. The early ones (developed during the 1950s) included
FORTRAN (designed for scientific and technical tasks) and COBOL (designed
for business applications). Both are still in limited use today.

While there are many popular programming languages, two predomi-
nate. Most programs written for modern systems are written in either C or
C++. In the examples to follow, we will be compiling a C program.

Programs written in high-level programming languages are converted
into machine language by processing them with another program, called a
compiler. Some compilers translate high-level instructions into assembly lan-
guage and then use an assembler to perform the final stage of translation
into machine language.

A process often used in conjunction with compiling is called linking.
Programs perform many common tasks. Take, for instance, opening a file.

298 Chapter 23

www.it-ebooks.info

http://www.it-ebooks.info/

Many programs perform this task, but it would be wasteful to have each pro-
gram implement its own routine to open files. It makes more sense to have
a single piece of programming that knows how to open files and to allow all
programs that need it to share it. Providing support for common tasks is
accomplished by what are called libraries. They contain multiple routines,
each performing some common task that multiple programs can share. If we
look in the /lib and /usr/lib directories, we can see where many of them live.
A program called a linker is used to form the connections between the out-
put of the compiler and the libraries that the compiled program requires.
The final result of this process is the executable program file, ready for use.

Are All Programs Compiled?
No. As we have seen, some programs, such as shell scripts, do not require
compiling but are executed directly. These are written in what are known as
scripting or interpreted languages. These languages, which have grown in pop-
ularity in recent years, include Perl, Python, PHP, Ruby, and many others.

Scripted languages are executed by a special program called an inter-
preter. An interpreter inputs the program file and reads and executes each
instruction contained within it. In general, interpreted programs execute
much more slowly than compiled programs. This is because each source
code instruction in an interpreted program is translated every time it is car-
ried out, whereas with a compiled program, a source code instruction is
translated only once, and this translation is permanently recorded in the
final executable file.

So why are interpreted languages so popular? For many programming
chores, the results are “fast enough,” but the real advantage is that it is gen-
erally faster and easier to develop interpreted programs than compiled pro-
grams. Programs are usually developed in a repeating cycle of code, compile,
test. As a program grows in size, the compilation phase of the cycle can
become quite long. Interpreted languages remove the compilation step
and thus speed up program development.

Compiling a C Program
Let’s compile something. Before we do that, however, we’re going to need
some tools like the compiler, the linker, and make. The C compiler used almost
universally in the Linux environment is called gcc (GNU C Compiler), ori-
ginally written by Richard Stallman. Most distributions do not install gcc by
default. We can check to see if the compiler is present like this:

[me@linuxbox ~]$ which gcc
/usr/bin/gcc

The results in this example indicate that the compiler is installed.

Compiling Programs 299
www.it-ebooks.info

http://www.it-ebooks.info/

Note: Your distribution may have a metapackage (a collection of packages) for software
development. If so, consider installing it if you intend to compile programs on your
system. If your system does not provide a metapackage, try installing the gcc and make
packages. On many distributions, they are sufficient to carry out the exercise below.

Obtaining the Source Code
For our compiling exercise, we are going to compile a program from the
GNU Project called diction. This handy little program checks text files for
writing quality and style. As programs go, it is fairly small and easy to build.

Following convention, we’re first going to create a directory for our
source code named src and then download the source code into it using ftp:

[me@linuxbox ~]$ mkdir src
[me@linuxbox ~]$ cd src
[me@linuxbox src]$ ftp ftp.gnu.org
Connected to ftp.gnu.org.
220 GNU FTP server ready.
Name (ftp.gnu.org:me): anonymous
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd gnu/diction
250 Directory successfully changed.
ftp> ls
200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.
-rw-r--r-- 1 1003 65534 68940 Aug 28 1998 diction-0.7.tar.gz
-rw-r--r-- 1 1003 65534 90957 Mar 04 2002 diction-1.02.tar.gz
-rw-r--r-- 1 1003 65534 141062 Sep 17 2007 diction-1.11.tar.gz
226 Directory send OK.
ftp> get diction-1.11.tar.gz
local: diction-1.11.tar.gz remote: diction-1.11.tar.gz
200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection for diction-1.11.tar.gz (141062
bytes).
226 File send OK.
141062 bytes received in 0.16 secs (847.4 kB/s)
ftp> bye
221 Goodbye.
[me@linuxbox src]$ ls
diction-1.11.tar.gz

Note: Since we are the maintainer of this source code while we compile it, we will keep it in
~/src. Source code installed by your distribution will be installed in /usr/src, while
source code intended for use by multiple users is usually installed in /usr/local/src.

As we can see, source code is usually supplied in the form of a com-
pressed tar file. Sometimes called a tarball, this file contains the source tree,
or hierarchy of directories and files that compose the source code. After
arriving at the FTP site, we examine the list of tar files available and select
the newest version for download. Using the get command within ftp, we
copy the file from the FTP server to the local machine.

300 Chapter 23

www.it-ebooks.info

ftp://ftp.gnu.org/
ftp://ftp.gnu.org/
http://www.it-ebooks.info/

Once the tar file is downloaded, it must be unpacked. This is done with
the tar program:

[me@linuxbox src]$ tar xzf diction-1.11.tar.gz
[me@linuxbox src]$ ls
diction-1.11 diction-1.11.tar.gz

Note: The diction program, like all GNU Project software, follows certain standards for
source code packaging. Most other source code available in the Linux ecosystem also
follows this standard. One element of the standard is that when the source code tar
file is unpacked, a directory will be created that contains the source tree and that this
directory will be named project-x.xx, thus containing both the project’s name and its
version number. This scheme allows easy installation of multiple versions of the same
program. However, it is often a good idea to examine the layout of the tree before unpack-
ing it. Some projects will not create the directory but instead will deliver the files directly
into the current directory. This will make a mess in your otherwise well-organized src
directory. To avoid this, use the following command to examine the contents of the
tar file:

tar tzvf tarfile | head

Examining the Source Tree
Unpacking the tar file results in the creation of a new directory, named
diction-1.11. This directory contains the source tree. Let’s look inside:

[me@linuxbox src]$ cd diction-1.11
[me@linuxbox diction-1.11]$ ls
config.guess diction.c getopt.c nl
config.h.in diction.pot getopt.h nl.po
config.sub diction.spec getopt_int.h README
configure diction.spec.in INSTALL sentence.c
configure.in diction.texi.in install-sh sentence.h
COPYING en Makefile.in style.1.in
de en_GB misc.c style.c
de.po en_GB.po misc.h test
diction.1.in getopt1.c NEWS

In it, we see a number of files. Programs belonging to the GNU Project,
as well as many others, will supply the documentation files README, INSTALL,
NEWS, and COPYING. These files contain the description of the program,
information on how to build and install it, and its licensing terms. It is always
a good idea to carefully read the README and INSTALL files before attempt-
ing to build the program.

The other interesting files in this directory are the ones ending with .c
and .h:

[me@linuxbox diction-1.11]$ ls *.c
diction.c getopt1.c getopt.c misc.c sentence.c style.c
[me@linuxbox diction-1.11]$ ls *.h
getopt.h getopt_int.h misc.h sentence.h

Compiling Programs 301
www.it-ebooks.info

http://www.it-ebooks.info/

The .c files contain the two C programs supplied by the package (style
and diction), divided into modules. It is common practice for large programs
to be broken into smaller, easier-to-manage pieces. The source code files are
ordinary text and can be examined with less:

[me@linuxbox diction-1.11]$ less diction.c

The .h files are known as header files. These, too, are ordinary text. Header
files contain descriptions of the routines included in a source code file or
library. In order for the compiler to connect the modules, it must receive a
description of all the modules needed to complete the entire program.
Near the beginning of the diction.c file, we see this line:

#include "getopt.h"

This instructs the compiler to read the file getopt.h as it reads the source
code in diction.c in order to “know” what’s in getopt.c. The getopt.c file sup-
plies routines that are shared by both the style and diction programs.

Above the include statement for getopt.h, we see some other include state-
ments such as these:

#include <regex.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

These also refer to header files, but they refer to header files that live
outside the current source tree. They are supplied by the system to support
the compilation of every program. If we look in /usr/include, we can see them:

[me@linuxbox diction-1.11]$ ls /usr/include

The header files in this directory were installed when we installed the
compiler.

Building the Program
Most programs build with a simple, two-command sequence:

./configure
make

The configure program is a shell script that is supplied with the source
tree. Its job is to analyze the build environment. Most source code is designed
to be portable. That is, it is designed to build on more than one kind of Unix-
like system. But in order to do that, the source code may need to undergo
slight adjustments during the build to accommodate differences between
systems. configure also checks to see that necessary external tools and com-
ponents are installed.

302 Chapter 23

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s run configure. Since configure is not located where the shell nor-
mally expects programs to be located, we must explicitly tell the shell its loc-
ation by prefixing the command with ./. This indicates that the program is
located in the current working directory:

[me@linuxbox diction-1.11]$./configure

configure will output a lot of messages as it tests and configures the
build. When it finishes, the output will look something like this:

checking libintl.h presence... yes
checking for libintl.h... yes
checking for library containing gettext... none required
configure: creating ./config.status
config.status: creating Makefile
config.status: creating diction.1
config.status: creating diction.texi
config.status: creating diction.spec
config.status: creating style.1
config.status: creating test/rundiction
config.status: creating config.h
[me@linuxbox diction-1.11]$

What’s important here is that there are no error messages. If there
were, the configuration would have failed, and the program would not
build until the errors are corrected.

We see configure created several new files in our source directory. The
most important one is Makefile. Makefile is a configuration file that instructs
the make program exactly how to build the program. Without it, make will
refuse to run. Makefile is an ordinary text file, so we can view it:

[me@linuxbox diction-1.11]$ less Makefile

The make program takes as input a makefile (which is normally named
Makefile), which describes the relationships and dependencies among the
components that compose the finished program.

The first part of the makefile defines variables that are substituted in
later sections of the makefile. For example, we see the line

CC= gcc

which defines the C compiler to be gcc. Later in the makefile, we see one
instance where it gets used:

diction: diction.o sentence.o misc.o getopt.o getopt1.o
 $(CC) -o $@ $(LDFLAGS) diction.o sentence.o misc.o \
 getopt.o getopt1.o $(LIBS)

A substitution is performed here, and the value $(CC) is replaced by gcc
at runtime.

Most of the makefile consists of lines, which define a target—in this
case the executable file diction—and the files on which it is dependent. The

Compiling Programs 303
www.it-ebooks.info

http://www.it-ebooks.info/

remaining lines describe the command(s) needed to create the target from
its components. We see in this example that the executable file diction (one
of the final end products) depends on the existence of diction.o, sentence.o,
misc.o, getopt.o, and getopt1.o. Later on, in the makefile, we see definitions of
each of these as targets.

diction.o: diction.c config.h getopt.h misc.h sentence.h
getopt.o: getopt.c getopt.h getopt_int.h
getopt1.o: getopt1.c getopt.h getopt_int.h
misc.o: misc.c config.h misc.h
sentence.o: sentence.c config.h misc.h sentence.h
style.o: style.c config.h getopt.h misc.h sentence.h

However, we don’t see any command specified for them. This is handled
by a general target, earlier in the file, that describes the command used to
compile any .c file into a .o file:

.c.o:
 $(CC) -c $(CPPFLAGS) $(CFLAGS) $<

This all seems very complicated. Why not simply list all the steps to
compile the parts and be done with it? The answer will become clear in a
moment. In the meantime, let’s run make and build our programs:

[me@linuxbox diction-1.11]$ make

The make program will run, using the contents of Makefile to guide its
actions. It will produce a lot of messages.

When it finishes, we will see that all the targets are now present in our
directory:

[me@linuxbox diction-1.11]$ ls
config.guess de.po en install-sh sentence.c
config.h diction en_GB Makefile sentence.h
config.h.in diction.1 en_GB.mo Makefile.in sentence.o
config.log diction.1.in en_GB.po misc.c style
config.status diction.c getopt1.c misc.h style.1
config.sub diction.o getopt1.o misc.o style.1.in
configure diction.pot getopt.c NEWS style.c
configure.in diction.spec getopt.h nl style.o
COPYING diction.spec.in getopt_int.h nl.mo test
de diction.texi getopt.o nl.po
de.mo diction.texi.in INSTALL README

Among the files, we see diction and style, the programs that we set out
to build. Congratulations are in order! We just compiled our first programs
from source code!

But just out of curiosity, let’s run make again:

[me@linuxbox diction-1.11]$ make
make: Nothing to be done for `all'.

304 Chapter 23

www.it-ebooks.info

http://www.it-ebooks.info/

It produces only this strange message. What’s going on? Why didn’t
it build the program again? Ah, this is the magic of make. Rather than simply
build everything again, make builds only what needs building. With all of
the targets present, make determined that there was nothing to do. We can
demonstrate this by deleting one of the targets and running make again to
see what it does.

[me@linuxbox diction-1.11]$ rm getopt.o
[me@linuxbox diction-1.11]$ make

We see that make rebuilds getopt.o and relinks the diction and style
programs, since they depend on the missing module. This behavior also
points out another important feature of make: It keeps targets up-to-date.
make insists that targets be newer than their dependencies. This makes per-
fect sense, as a programmer will often update a bit of source code and then
use make to build a new version of the finished product. make ensures that
everything that needs building based on the updated code is built. If we use
the touch program to “update” one of the source code files, we can see this
happen:

[me@linuxbox diction-1.11]$ ls -l diction getopt.c
-rwxr-xr-x 1 me me 37164 2009-03-05 06:14 diction
-rw-r--r-- 1 me me 33125 2007-03-30 17:45 getopt.c
[me@linuxbox diction-1.11]$ touch getopt.c
[me@linuxbox diction-1.11]$ ls -l diction getopt.c
-rwxr-xr-x 1 me me 37164 2009-03-05 06:14 diction
-rw-r--r-- 1 me me 33125 2009-03-05 06:23 getopt.c
[me@linuxbox diction-1.11]$ make

After make runs, we see that it has restored the target to being newer
than the dependency:

[me@linuxbox diction-1.11]$ ls -l diction getopt.c
-rwxr-xr-x 1 me me 37164 2009-03-05 06:24 diction
-rw-r--r-- 1 me me 33125 2009-03-05 06:23 getopt.c

The ability of make to intelligently build only what needs building is a
great benefit to programmers. While the time savings may not be apparent
with our small project, it is significant with larger projects. Remember, the
Linux kernel (a program that undergoes continuous modification and
improvement) contains several million lines of code.

Installing the Program
Well-packaged source code often includes a special make target called install.
This target will install the final product in a system directory for use. Usu-
ally, this directory is /usr/local/bin, the traditional location for locally built
software. However, this directory is not normally writable by ordinary users,
so we must become the superuser to perform the installation:

[me@linuxbox diction-1.11]$ sudo make install

Compiling Programs 305
www.it-ebooks.info

http://www.it-ebooks.info/

After we perform the installation, we can check that the program is
ready to go:

[me@linuxbox diction-1.11]$ which diction
/usr/local/bin/diction
[me@linuxbox diction-1.11]$ man diction

And there we have it!

Final Note
In this chapter, we have seen how three simple commands—./configure,
make, make install—can be used to build many source code packages. We
have also seen the important role that make plays in the maintenance of pro-
grams. The make program can be used for any task that needs to maintain a
target/dependency relationship, not just for compiling source code.

306 Chapter 23

www.it-ebooks.info

http://www.it-ebooks.info/

