
PART 4
W R I T I N G S H E L L S C R I P T S

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

W R I T I N G Y O U R F I R S T S C R I P T

In the preceding chapters, we have assembled an
arsenal of command-line tools. While these tools can
solve many kinds of computing problems, we are still
limited to manually using them one by one on the
command line. Wouldn’t it be great if we could get the shell to do more of
the work? We can. By joining our tools together into programs of our own
design, the shell can carry out complex sequences of tasks all by itself. We
enable it to do this by writing shell scripts.

What Are Shell Scripts?
In the simplest terms, a shell script is a file containing a series of commands.
The shell reads this file and carries out the commands as though they have
been entered directly on the command line.

The shell is distinctive, in that it is both a powerful command-line inter-
face to the system and a scripting language interpreter. As we will see, most
of the things that can be done on the command line can be done in scripts,
and most of the things that can be done in scripts can be done on the com-
mand line.

www.it-ebooks.info

http://www.it-ebooks.info/

We have covered many shell features, but we have focused on those fea-
tures most often used directly on the command line. The shell also provides
a set of features usually (but not always) used when writing programs.

How to Write a Shell Script
To successfully create and run a shell script, we need to do three things:

1. Write a script. Shell scripts are ordinary text files. So we need a text
editor to write them. The best text editors will provide syntax highlight-
ing, allowing us to see a color-coded view of the elements of the script.
Syntax highlighting will help us spot certain kinds of common errors.
vim, gedit, kate, and many other editors are good candidates for writing
scripts.

2. Make the script executable. The system is fussy about not letting any old
text file be treated as a program, and for good reason! We need to set
the script file’s permissions to allow execution.

3. Put the script somewhere the shell can find it. The shell automatically
searches certain directories for executable files when no explicit path-
name is specified. For maximum convenience, we will place our scripts
in these directories.

Script File Format
In keeping with programming tradition, we’ll create a “hello world” pro-
gram to demonstrate an extremely simple script. So let’s fire up our text
editors and enter the following script:

#!/bin/bash

This is our first script.

echo 'Hello World!'

The last line of our script is pretty familiar, just an echo command with
a string argument. The second line is also familiar. It looks like a comment
that we have seen in many of the configuration files we have examined and
edited. One thing about comments in shell scripts is that they may also
appear at the ends of lines, like so:

echo 'Hello World!' # This is a comment too

Everything from the # symbol onward on the line is ignored.
Like many things, this works on the command line, too:

[me@linuxbox ~]$ echo 'Hello World!' # This is a comment too
Hello World!

Though comments are of little use on the command line, they will work.

310 Chapter 24

www.it-ebooks.info

http://www.it-ebooks.info/

The first line of our script is a little mysterious. It looks as if it should be
a comment, since it starts with #, but it looks too purposeful to be just that.
The #! character sequence is, in fact, a special construct called a shebang. The
shebang is used to tell the system the name of the interpreter that should be
used to execute the script that follows. Every shell script should include this
as its first line.

Let’s save our script file as hello_world.

Executable Permissions
The next thing we have to do is make our script executable. This is easily
done using chmod:

[me@linuxbox ~]$ ls -l hello_world
-rw-r--r-- 1 me me 63 2012-03-07 10:10 hello_world
[me@linuxbox ~]$ chmod 755 hello_world
[me@linuxbox ~]$ ls -l hello_world
-rwxr-xr-x 1 me me 63 2012-03-07 10:10 hello_world

There are two common permission settings for scripts: 755 for scripts
that everyone can execute and 700 for scripts that only the owner can
execute. Note that scripts must be readable in order to be executed.

Script File Location
With the permissions set, we can now execute our script:

[me@linuxbox ~]$./hello_world
Hello World!

In order for the script to run, we must precede the script name with an
explicit path. If we don’t, we get this:

[me@linuxbox ~]$ hello_world
bash: hello_world: command not found

Why is this? What makes our script different from other programs? As
it turns out, nothing. Our script is fine. Its location is the problem. Back in
Chapter 11, we discussed the PATH environment variable and its effect on how
the system searches for executable programs. To recap, the system searches
a list of directories each time it needs to find an executable program, if no
explicit path is specified. This is how the system knows to execute /bin/ls when
we type ls at the command line. The /bin directory is one of the directories
that the system automatically searches. The list of directories is held within
an environment variable named PATH. The PATH variable contains a colon-
separated list of directories to be searched. We can view the contents of PATH:

[me@linuxbox ~]$ echo $PATH
/home/me/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr
/games

Writing Your First Script 311
www.it-ebooks.info

http://www.it-ebooks.info/

Here we see our list of directories. If our script were located in any of
the directories in the list, our problem would be solved. Notice the first
directory in the list, /home/me/bin. Most Linux distributions configure the
PATH variable to contain a bin directory in the user’s home directory to allow
users to execute their own programs. So if we create the bin directory and
place our script within it, it should start to work like other programs:

[me@linuxbox ~]$ mkdir bin
[me@linuxbox ~]$ mv hello_world bin
[me@linuxbox ~]$ hello_world
Hello World!

If the PATH variable does not contain the directory, we can easily add it by
including this line in our .bashrc file:

export PATH=~/bin:"$PATH"

After this change is made, it will take effect in each new terminal ses-
sion. To apply the change to the current terminal session, we must have the
shell reread the .bashrc file. This can be done by “sourcing” it:

[me@linuxbox ~]$. .bashrc

The dot (.) command is a synonym for the source command, a shell
builtin that reads a specified file of shell commands and treats it like input
from the keyboard.

Note: Ubuntu automatically adds the ~/bin directory to the PATH variable if the ~/bin
directory exists when the user’s .bashrc file is executed. So, on Ubuntu systems, if we
create the ~/bin directory and then log out and log in again, everything works.

Good Locations for Scripts
The ~/bin directory is a good place to put scripts intended for personal use.
If we write a script that everyone on a system is allowed to use, the traditional
location is /usr/local/bin. Scripts intended for use by the system administrator
are often located in /usr/local/sbin. In most cases, locally supplied software,
whether scripts or compiled programs, should be placed in the /usr/local
hierarchy and not in /bin or /usr/bin. These directories are specified by the
Linux Filesystem Hierarchy Standard to contain only files supplied and
maintained by the Linux distributor.

More Formatting Tricks
One of the key goals of serious script writing is ease of maintenance ; that is,
the ease with which a script may be modified by its author or others to be
adapted to changing needs. Making a script easy to read and understand is
one way to facilitate easy maintenance.

312 Chapter 24

www.it-ebooks.info

http://www.it-ebooks.info/

Long Option Names
Many of the commands we have studied feature both short and long option
names. For instance, the ls command has many options that can be expressed
in either short or long form. For example:

[me@linuxbox ~]$ ls -ad

and

[me@linuxbox ~]$ ls --all --directory

are equivalent commands. In the interests of reduced typing, short options are
preferred when entering options on the command line, but when writing
scripts, long options can improve readability.

Indentation and Line Continuation
When employing long commands, readability can be enhanced by spread-
ing the command over several lines. In Chapter 17, we looked at a particu-
larly long example of the find command:

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 -exec chmod 0600
'{}' ';' \) -or \(-type d -not -perm 0700 -exec chmod 0700 '{}' ';' \)

This command is a little hard to figure out at first glance. In a script,
this command might be easier to understand if written this way:

find playground \
\(\

-type f \
-not -perm 0600 \
-exec chmod 0600 '{}' ';' \

\) \
-or \
\(\

-type d \
-not -perm 0700 \

-exec chmod 0700 '{}' ';' \
\)

Through the use of line continuations (backslash-linefeed sequences)
and indentation, the logic of this complex command is more clearly described
to the reader. This technique works on the command line, too, though it is
seldom used as it is very awkward to type and edit. One difference between
a script and the command line is that a script may employ tab characters to
achieve indentation, whereas the command line cannot because tabs are
used to activate completion.

Writing Your First Script 313
www.it-ebooks.info

http://www.it-ebooks.info/

C O N F I G U R I N G V I M F O R S C R I P T W R I T I N G

The vim text editor has many, many configuration settings. Several common
options can facilitate script writing.

:syntax on turns on syntax highlighting. With this setting, different elements
of shell syntax will be displayed in different colors when viewing a script. This
is helpful for identifying certain kinds of programming errors. It looks cool,
too. Note that for this feature to work, you must have a complete version of vim
installed, and the file you are editing must have a shebang indicating the file is
a shell script. If you have difficulty with :syntax on, try :set syntax=sh instead.

:set hlsearch turns on the option to highlight search results. Say we search
for the word echo. With this option on, each instance of the word will be high-
lighted.

:set tabstop=4 sets the number of columns occupied by a tab character.
The default is eight columns. Setting the value to 4 (which is a common prac-
tice) allows long lines to fit more easily on the screen.

:set autoindent turns on the auto indent feature. This causes vim to indent a
new line the same amount as the line just typed. This speeds up typing on many
kinds of programming constructs. To stop indentation, type CTRL-D.

These changes can be made permanent by adding these commands (with-
out the leading colon characters) to your ~/.vimrc file.

Final Note
In this first chapter about scripting, we have looked at how scripts are writ-
ten and made to easily execute on our system. We also saw how we can use
various formatting techniques to improve the readability (and thus, the
maintainability) of our scripts. In future chapters, ease of maintenance will
come up again and again as a central principle in good script writing.

314 Chapter 24

www.it-ebooks.info

http://www.it-ebooks.info/

S T A R T I N G A P R O J E C T

Starting with this chapter, we will begin to build a pro-
gram. The purpose of this project is to see how various
shell features are used to create programs and, more
importantly, create good programs.

The program we will write is a report generator. It will present various statis-
tics about our system and its status, and it will produce this report in HTML
format so we can view it with a web browser.

Programs are usually built up in a series of stages, with each stage adding
features and capabilities. The first stage of our program will produce a very
minimal HTML page that contains no system information. That will come later.

First Stage: Minimal Document
The first thing we need to know is the format of a well-formed HTML docu-
ment. It looks like this:

<HTML>
<HEAD>

<TITLE>Page Title</TITLE>

www.it-ebooks.info

http://www.it-ebooks.info/

</HEAD>
<BODY>

Page body.
</BODY>

</HTML>

If we enter this into our text editor and save the file as foo.html, we can
use the following URL in Firefox to view the file: file:///home/username/
foo.html.

The first stage of our program will be able to output this HTML file to
standard output. We can write a program to do this pretty easily. Let’s start
our text editor and create a new file named ~/bin/sys_info_page:

[me@linuxbox ~]$ vim ~/bin/sys_info_page

And we’ll enter the following program:

#!/bin/bash

Program to output a system information page

echo "<HTML>"
echo " <HEAD>"
echo " <TITLE>Page Title</TITLE>"
echo " </HEAD>"
echo " <BODY>"
echo " Page body."
echo " </BODY>"
echo "</HTML>"

Our first attempt at this problem contains a shebang; a comment (always
a good idea); and a sequence of echo commands, one for each line of out-
put. After saving the file, we’ll make it executable and attempt to run it:

[me@linuxbox ~]$ chmod 755 ~/bin/sys_info_page
[me@linuxbox ~]$ sys_info_page

When the program runs, we should see the text of the HTML document
displayed on the screen, because the echo commands in the script send their
output to standard output. We’ll run the program again and redirect the out-
put of the program to the file sys_info_page.html, so that we can view the result
with a web browser:

[me@linuxbox ~]$ sys_info_page > sys_info_page.html
[me@linuxbox ~]$ firefox sys_info_page.html

So far, so good.
When writing programs, it’s always a good idea to strive for simplicity

and clarity. Maintenance is easier when a program is easy to read and under-
stand, not to mention that the program is easier to write when we reduce
the amount of typing. Our current version of the program works fine, but it
could be simpler. We could combine all the echo commands into one, which

316 Chapter 25

www.it-ebooks.info

http://www.it-ebooks.info/

would certainly make it easier to add more lines to the program’s output.
So, let’s change our program to this:

#!/bin/bash

Program to output a system information page

echo "<HTML>
<HEAD>

<TITLE>Page Title</TITLE>
</HEAD>
<BODY>

Page body.
</BODY>

</HTML>"

A quoted string may include newlines and, therefore, contain multiple
lines of text. The shell will keep reading the text until it encounters the clos-
ing quotation mark. It works this way on the command line, too:

[me@linuxbox ~]$ echo "<HTML>
> <HEAD>
> <TITLE>Page Title</TITLE>
> </HEAD>
> <BODY>
> Page body.
> </BODY>
> </HTML>"

The leading > character is the shell prompt contained in the PS2 shell
variable. It appears whenever we type a multiline statement into the shell.
This feature is a little obscure right now, but later, when we cover multiline
programming statements, it will turn out to be quite handy.

Second Stage: Adding a Little Data
Now that our program can generate a minimal document, let’s put some
data in the report. To do this, we will make the following changes:

#!/bin/bash

Program to output a system information page

echo "<HTML>
 <HEAD>
 <TITLE>System Information Report</TITLE>
 </HEAD>

 <BODY>
 <H1>System Information Report</H1>
 </BODY>
</HTML>"

We added a page title and a heading to the body of the report.

Starting a Project 317
www.it-ebooks.info

http://www.it-ebooks.info/

Variables and Constants
There is an issue with our script, however. Notice how the string System
Information Report is repeated? With our tiny script it’s not a problem, but
let’s imagine that our script was really long and we had multiple instances
of this string. If we wanted to change the title to something else, we would
have to change it in multiple places, which could be a lot of work. What if we
could arrange the script so that the string appeared only once and not mul-
tiple times? That would make future maintenance of the script much easier.
Here’s how we could do that:

#!/bin/bash

Program to output a system information page

title="System Information Report"

echo "<HTML>
 <HEAD>
 <TITLE>$title</TITLE>
 </HEAD>
 <BODY>
 <H1>$title</H1>
 </BODY>
</HTML>"

By creating a variable named title and assigning it the value System
Information Report, we can take advantage of parameter expansion and
place the string in multiple locations.

Creating Variables and Constants
So, how do we create a variable? Simple, we just use it. When the shell
encounters a variable, it automatically creates it. This differs from many pro-
gramming languages in which variables must be explicitly declared or defined
before use. The shell is very lax about this, which can lead to some problems.
For example, consider this scenario played out on the command line:

[me@linuxbox ~]$ foo="yes"
[me@linuxbox ~]$ echo $foo
yes
[me@linuxbox ~]$ echo $fool

[me@linuxbox ~]$

We first assign the value yes to the variable foo and then display its value
with echo. Next we display the value of the variable name misspelled as fool
and get a blank result. This is because the shell happily created the variable
fool when it encountered it and then gave it the default value of nothing,

318 Chapter 25

www.it-ebooks.info

http://www.it-ebooks.info/

or empty. From this, we learn that we must pay close attention to our spell-
ing! It’s also important to understand what really happened in this example.
From our previous look at how the shell performs expansions, we know
that the command

[me@linuxbox ~]$ echo $foo

undergoes parameter expansion and results in

[me@linuxbox ~]$ echo yes

On the other hand, the command

[me@linuxbox ~]$ echo $fool

expands into

[me@linuxbox ~]$ echo

The empty variable expands into nothing! This can play havoc with
commands that require arguments. Here’s an example:

[me@linuxbox ~]$ foo=foo.txt
[me@linuxbox ~]$ foo1=foo1.txt
[me@linuxbox ~]$ cp $foo $fool
cp: missing destination file operand after `foo.txt'
Try `cp --help' for more information.

We assign values to two variables, foo and foo1. We then perform a cp
but misspell the name of the second argument. After expansion, the cp
command is sent only one argument, though it requires two.

There are some rules about variable names:

Variable names may consist of alphanumeric characters (letters and
numbers) and underscore characters.

The first character of a variable name must be either a letter or an
underscore.

Spaces and punctuation symbols are not allowed.

The word variable implies a value that changes, and in many applica-
tions, variables are used this way. However, the variable in our application,
title, is used as a constant. A constant is just like a variable in that it has a
name and contains a value. The difference is that the value of a constant
does not change. In an application that performs geometric calculations,
we might define PI as a constant and assign it the value of 3.1415, instead
of using the number literally throughout our program. The shell makes no
distinction between variables and constants; these terms are mostly for the

Starting a Project 319
www.it-ebooks.info

http://www.it-ebooks.info/

programmer’s convenience. A common convention is to use uppercase let-
ters to designate constants and lowercase letters for true variables. We will
modify our script to comply with this convention:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"

echo "<HTML>
 <HEAD>
 <TITLE>$TITLE</TITLE>
 </HEAD>
 <BODY>
 <H1>$TITLE</H1>
 </BODY>
</HTML>"

We also took the opportunity to jazz up our title by adding the value of
the shell variable HOSTNAME. This is the network name of the machine.

Note: The shell actually does provide a way to enforce the immutability of constants, through
the use of the declare built-in command with the -r (read-only) option. Had we
assigned TITLE this way:

declare -r TITLE="Page Title"

the shell would prevent any subsequent assignment to TITLE. This feature is rarely
used, but it exists for very formal scripts.

Assigning Values to Variables and Constants
Here is where our knowledge of expansion really starts to pay off. As we
have seen, variables are assigned values this way:

variable=value

where variable is the name of the variable and value is a string. Unlike some
other programming languages, the shell does not care about the type of
data assigned to a variable; it treats them all as strings. You can force the
shell to restrict the assignment to integers by using the declare command
with the -i option, but, like setting variables as read-only, this is rarely done.

Note that in an assignment, there must be no spaces between the vari-
able name, the equal sign, and the value. So what can the value consist of?
Anything that we can expand into a string.

a=z # Assign the string "z" to variable a.
b="a string" # Embedded spaces must be within quotes.
c="a string and $b" # Other expansions such as variables can be

expanded into the assignment.
d=$(ls -l foo.txt) # Results of a command.

320 Chapter 25

www.it-ebooks.info

http://www.it-ebooks.info/

e=$((5 * 7)) # Arithmetic expansion.
f="\t\ta string\n" # Escape sequences such as tabs and newlines.

Multiple variable assignments may be done on a single line:

a=5 b="a string"

During expansion, variable names may be surrounded by optional curly
braces {}. This is useful in cases where a variable name becomes ambiguous
due to its surrounding context. Here, we try to change the name of a file
from myfile to myfile1, using a variable:

[me@linuxbox ~]$ filename="myfile"
[me@linuxbox ~]$ touch $filename
[me@linuxbox ~]$ mv $filename $filename1
mv: missing destination file operand after `myfile'
Try `mv --help' for more information.

This attempt fails because the shell interprets the second argument of
the mv command as a new (and empty) variable. The problem can be over-
come this way:

[me@linuxbox ~]$ mv $filename ${filename}1

By adding the surrounding braces, we ensure that the shell no longer
interprets the trailing 1 as part of the variable name.

We’ll take this opportunity to add some data to our report, namely the
date and time the report was created and the username of the creator:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME=$(date +"%x %r %Z")
TIME_STAMP="Generated $CURRENT_TIME, by $USER"

echo "<HTML>
 <HEAD>
 <TITLE>$TITLE</TITLE>
 </HEAD>
 <BODY>
 <H1>$TITLE</H1>
 <P>$TIME_STAMP</P>
 </BODY>
</HTML>"

Here Documents
We’ve looked at two different methods of outputting our text, both using
the echo command. There is a third way called a here document or here script. A
here document is an additional form of I/O redirection in which we embed

Starting a Project 321
www.it-ebooks.info

http://www.it-ebooks.info/

a body of text into our script and feed it into the standard input of a com-
mand. It works like this:

command << token
text
token

where command is the name of a command that accepts standard input and
token is a string used to indicate the end of the embedded text. We’ll
modify our script to use a here document:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME=$(date +"%x %r %Z")
TIME_STAMP="Generated $CURRENT_TIME, by $USER"

cat << _EOF_
<HTML>
 <HEAD>
 <TITLE>$TITLE</TITLE>
 </HEAD>
 <BODY>
 <H1>$TITLE</H1>
 <P>$TIME_STAMP</P>
 </BODY>
</HTML>
EOF

Instead of using echo, our script now uses cat and a here document. The
string _EOF_ (meaning end-of-file, a common convention) was selected as the
token and marks the end of the embedded text. Note that the token must
appear alone and that there must not be trailing spaces on the line.

So what’s the advantage of using a here document? It’s mostly the same as
echo, except that, by default, single and double quotes within here documents
lose their special meaning to the shell. Here is a command-line example:

[me@linuxbox ~]$ foo="some text"
[me@linuxbox ~]$ cat << _EOF_
> $foo
> "$foo"
> '$foo'
> \$foo
> _EOF_
some text
"some text"
'some text'
$foo

As we can see, the shell pays no attention to the quotation marks. It treats
them as ordinary characters. This allows us to embed quotes freely within a
here document. This could turn out to be handy for our report program.

322 Chapter 25

www.it-ebooks.info

http://www.it-ebooks.info/

Here documents can be used with any command that accepts standard
input. In this example, we use a here document to pass a series of commands
to the ftp program in order to retrieve a file from a remote FTP server:

#!/bin/bash

Script to retrieve a file via FTP

FTP_SERVER=ftp.nl.debian.org
FTP_PATH=/debian/dists/lenny/main/installer-i386/current/images/cdrom
REMOTE_FILE=debian-cd_info.tar.gz

ftp -n << _EOF_
open $FTP_SERVER
user anonymous me@linuxbox
cd $FTP_PATH
hash
get $REMOTE_FILE
bye
EOF
ls -l $REMOTE_FILE

If we change the redirection operator from << to <<-, the shell will
ignore leading tab characters in the here document. This allows a here
document to be indented, which can improve readability:

#!/bin/bash

Script to retrieve a file via FTP

FTP_SERVER=ftp.nl.debian.org
FTP_PATH=/debian/dists/lenny/main/installer-i386/current/images/cdrom
REMOTE_FILE=debian-cd_info.tar.gz

ftp -n <<- _EOF_
open $FTP_SERVER
user anonymous me@linuxbox
cd $FTP_PATH
hash
get $REMOTE_FILE
bye
EOF

ls -l $REMOTE_FILE

Final Note
In this chapter, we started a project that will carry us through the process of
building a successful script. We introduced the concept of variables and con-
stants and how they can be employed. They are the first of many applications
we will find for parameter expansion. We also looked at how to produce out-
put from our script and various methods for embedding blocks of text.

Starting a Project 323
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

T O P - D O W N D E S I G N

As programs get larger and more complex, they
become more difficult to design, code, and maintain.
As with any large project, it is often a good idea to break
large, complex tasks into a series of small, simple tasks.

Let’s imagine that we are trying to describe a common, everyday task
going to the market to buy food to a person from Mars. We might describe
the overall process as the following series of steps:

1. Get in car.

2. Drive to market.

3. Park car.

4. Enter market.

5. Purchase food.

6. Return to car.

7. Drive home.

8. Park car.

9. Enter house.

www.it-ebooks.info

http://www.it-ebooks.info/

However, a person from Mars is likely to need more detail. We could
further break down the subtask “Park car” into another series of steps.

1. Find parking space.

2. Drive car into space.

3. Turn off motor.

4. Set parking brake.

5. Exit car.

6. Lock car.

The “Turn off motor” subtask could further be broken down into steps
including “Turn off ignition,” “Remove ignition key,” and so on, until every
step of the entire process of going to the market has been fully defined.

This process of identifying the top-level steps and developing increas-
ingly detailed views of those steps is called top-down design. This technique
allows us to break large, complex tasks into many small, simple tasks. Top-
down design is a common method of designing programs and one that is
well suited to shell programming in particular.

In this chapter, we will use top-down design to further develop our
report-generator script.

Shell Functions
Our script currently performs the following steps to generate the HTML
document:

1. Open page.

2. Open page header.

3. Set page title.

4. Close page header.

5. Open page body.

6. Output page heading.

7. Output timestamp.

8. Close page body.

9. Close page.

For our next stage of development, we will add some tasks between
steps 7 and 8. These will include:

System uptime and load. This is the amount of time since the last shut-
down or reboot and the average number of tasks currently running on
the processor over several time intervals.

Disk space. The overall use of space on the system’s storage devices.

Home space. The amount of storage space being used by each user.

If we had a command for each of these tasks, we could add them to our
script simply through command substitution:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"

326 Chapter 26

www.it-ebooks.info

http://www.it-ebooks.info/

CURRENT_TIME=$(date +"%x %r %Z")
TIME_STAMP="Generated $CURRENT_TIME, by $USER"

cat << _EOF_
<HTML>
 <HEAD>
 <TITLE>$TITLE</TITLE>
 </HEAD>
 <BODY>
 <H1>$TITLE</H1>
 <P>$TIME_STAMP</P>
 $(report_uptime)
 $(report_disk_space)
 $(report_home_space)
 </BODY>
</HTML>
EOF

We could create these additional commands two ways. We could write
three separate scripts and place them in a directory listed in our PATH, or we
could embed the scripts within our program as shell functions. As we have
mentioned before, shell functions are “miniscripts” that are located inside
other scripts and can act as autonomous programs. Shell functions have two
syntactic forms. The first looks like this:

function name {
commands
return

}

where name is the name of the function and commands is a series of commands
contained within the function. The second looks like this:

name () {
commands
return

}

Both forms are equivalent and may be used interchangeably. Below we
see a script that demonstrates the use of a shell function:

 1 #!/bin/bash
 2
 3 # Shell function demo
 4
 5 function funct {
 6 echo "Step 2"
 7 return
 8 }
 9
10 # Main program starts here
11
12 echo "Step 1"
13 funct
14 echo "Step 3"

As the shell reads the script, it passes over lines 1 through 11, as those
lines consist of comments and the function definition. Execution begins at

Top-Down Design 327
www.it-ebooks.info

http://www.it-ebooks.info/

line 12, with an echo command. Line 13 calls the shell function funct, and the
shell executes the function just as it would any other command. Program con-
trol then moves to line 6, and the second echo command is executed. Line 7
is executed next. Its return command terminates the function and returns
control to the program at the line following the function call (line 14), and
the final echo command is executed. Note that in order for function calls to
be recognized as shell functions and not interpreted as the names of external
programs, shell function definitions must appear in the script before they
are called.

We’ll add minimal shell function definitions to our script:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME=$(date +"%x %r %Z")
TIME_STAMP="Generated $CURRENT_TIME, by $USER"

report_uptime () {
return

}

report_disk_space () {

return
}

report_home_space () {
return

}

cat << _EOF_
<HTML>

<HEAD>
<TITLE>$TITLE</TITLE>

</HEAD>
<BODY>

<H1>$TITLE</H1>
<P>$TIME_STAMP</P>
$(report_uptime)
$(report_disk_space)
$(report_home_space)

</BODY>
</HTML>
EOF

Shell-function names follow the same rules as variables. A function must
contain at least one command. The return command (which is optional) sat-
isfies the requirement.

Local Variables
In the scripts we have written so far, all the variables (including constants) have
been global variables. Global variables maintain their existence throughout
the program. This is fine for many things, but it can sometimes complicate

328 Chapter 26

www.it-ebooks.info

http://www.it-ebooks.info/

the use of shell functions. Inside shell functions, it is often desirable to have
local variables. Local variables are accessible only within the shell function
in which they are defined, and they cease to exist once the shell function
terminates.

Having local variables allows the programmer to use variables with
names that may already exist, either in the script globally or in other shell
functions, without having to worry about potential name conflicts.

Here is an example script that demonstrates how local variables are
defined and used:

#!/bin/bash

local-vars: script to demonstrate local variables

foo=0 # global variable foo

funct_1 () {

local foo # variable foo local to funct_1

foo=1
echo "funct_1: foo = $foo"

}

funct_2 () {

local foo # variable foo local to funct_2

foo=2
echo "funct_2: foo = $foo"

}

echo "global: foo = $foo"
funct_1
echo "global: foo = $foo"
funct_2
echo "global: foo = $foo"

As we can see, local variables are defined by preceding the variable
name with the word local. This creates a variable that is local to the shell
function in which it is defined. Once the script is outside the shell function,
the variable no longer exists. When we run this script, we see the results:

[me@linuxbox ~]$ local-vars
global: foo = 0
funct_1: foo = 1
global: foo = 0
funct_2: foo = 2
global: foo = 0

We see that the assignment of values to the local variable foo within
both shell functions has no effect on the value of foo defined outside the
functions.

This feature allows shell functions to be written so that they remain
independent of each other and of the script in which they appear. This is

Top-Down Design 329
www.it-ebooks.info

http://www.it-ebooks.info/

very valuable, as it helps prevent one part of a program from interfering
with another. It also allows shell functions to be written so that they can
be portable. That is, they may be cut and pasted from script to script, as
needed.

Keep Scripts Running
While developing our program, it is useful to keep the program in a run-
nable state. By doing this, and testing frequently, we can detect errors early
in the development process. This will make debugging problems much easier.
For example, if we run the program, make a small change, run the program
again, and find a problem, it’s very likely that the most recent change is the
source of the problem. By adding empty functions, called stubs in program-
mer-speak, we can verify the logical flow of our program at an early stage.
When constructing a stub, it’s a good idea to include something that provides
feedback to the programmer that shows the logical flow is being carried out.
If we look at the output of our script now, we see that there are some blank
lines in our output after the timestamp, but we can’t be sure of the cause.

[me@linuxbox ~]$ sys_info_page
<HTML>

<HEAD>
<TITLE>System Information Report For twin2</TITLE>

</HEAD>
<BODY>

<H1>System Information Report For linuxbox</H1>
<P>Generated 03/19/2012 04:02:10 PM EDT, by me</P>

</BODY>
</HTML>

We can change the functions to include some feedback:

report_uptime () {
 echo "Function report_uptime executed."
 return
}

report_disk_space () {
 echo "Function report_disk_space executed."
 return
}

report_home_space () {
 echo "Function report_home_space executed."
 return
}

330 Chapter 26

www.it-ebooks.info

http://www.it-ebooks.info/

And then we run the script again:

[me@linuxbox ~]$ sys_info_page
<HTML>

<HEAD>
<TITLE>System Information Report For linuxbox</TITLE>

</HEAD>
<BODY>

<H1>System Information Report For linuxbox</H1>
<P>Generated 03/20/2012 05:17:26 AM EDT, by me</P>
Function report_uptime executed.
Function report_disk_space executed.
Function report_home_space executed.

</BODY>
</HTML>

We now see that, in fact, our three functions are being executed.
With our function framework in place and working, it’s time to flesh out

some of the function code. First, the report_uptime function:

report_uptime () {
cat <<- _EOF_

 <H2>System Uptime</H2>
 <PRE>$(uptime)</PRE>
 EOF_

return
}

It’s pretty straightforward. We use a here document to output a section
header and the output of the uptime command, surrounded by <PRE> tags to
preserve the formatting of the command. The report_disk_space function is
similar:

report_disk_space () {
cat <<- _EOF_

<H2>Disk Space Utilization</H2>
<PRE>$(df -h)</PRE>
EOF

return
}

This function uses the df -h command to determine the amount of disk
space. Lastly, we’ll build the report_home_space function:

report_home_space () {
cat <<- _EOF_

<H2>Home Space Utilization</H2>
<PRE>$(du -sh /home/*)</PRE>
EOF

return
}

Top-Down Design 331
www.it-ebooks.info

http://www.it-ebooks.info/

We use the du command with the -sh options to perform this task. This,
however, is not a complete solution to the problem. While it will work on
some systems (Ubuntu, for example), it will not work on others. The reason
is that many systems set the permissions of home directories to prevent them
from being world readable, which is a reasonable security measure. On these
systems, the report_home_space function, as written, will work only if our script
is run with superuser privileges. A better solution would be to have the script
adjust its behavior according to the privileges of the user. We will take this
up in Chapter 27.

S H E L L F U N C T I O N S I N Y O U R . B A S H R C F I L E

Shell functions make excellent replacements for aliases, and they are actually
the preferred method of creating small commands for personal use. Aliases are
very limited in the kind of commands and shell features they support, whereas
shell functions allow anything that can be scripted. For example, if we liked the
report_disk_space shell function that we developed for our script, we could cre-
ate a similar function named ds for our .bashrc file:

ds () {
echo “Disk Space Utilization For $HOSTNAME”
df -h

}

Final Note
In this chapter, we have introduced a common method of program design
called top-down design, and we have seen how shell functions are used to
build the stepwise refinement that it requires. We have also seen how local
variables can be used to make shell functions independent from one another
and from the program in which they are placed. This makes it possible for
shell functions to be written in a portable manner and to be reusable by
allowing them to be placed in multiple programs—a great time saver.

332 Chapter 26

www.it-ebooks.info

http://www.it-ebooks.info/

F L O W C O N T R O L :
B R A N C H I N G W I T H I F

In the last chapter, we were presented with a problem.
How can we make our report-generator script adapt to
the privileges of the user running the script? The solu-
tion to this problem will require us to find a way to
“change directions” within our script, based on the
results of a test. In programming terms, we need the
program to branch.

Let’s consider a simple example of logic expressed in pseudocode, a simu-
lation of a computer language intended for human consumption:

X = 5
If X = 5, then:

Say “X equals 5.”
Otherwise:

Say “X is not equal to 5.”

www.it-ebooks.info

http://www.it-ebooks.info/

This is an example of a branch. Based on the condition “Does X = 5?”
do one thing: “Say ‘X equals 5.’” Otherwise do another thing: “Say ‘X is not
equal to 5.’”

Using if
Using the shell, we can code the logic above as follows:

x=5

if [$x = 5]; then
echo "x equals 5."

else
echo "x does not equal 5."

fi

Or we can enter it directly at the command line (slightly shortened):

[me@linuxbox ~]$ x=5
[me@linuxbox ~]$ if [$x = 5]; then echo "equals 5"; else echo "does not equal
5"; fi
equals 5
[me@linuxbox ~]$ x=0
[me@linuxbox ~]$ if [$x = 5]; then echo "equals 5"; else echo "does not equal
5"; fi
does not equal 5

In this example, we execute the command twice. Once, with the value
of x set to 5, which results in the string equals 5 being output, and the
second time with the value of x set to 0, which results in the string does
not equal 5 being output.

The if statement has the following syntax:

if commands; then
commands

[elif commands; then
commands...]

[else
commands]

fi

where commands is a list of commands. This is a little confusing at first glance.
But before we can clear this up, we have to look at how the shell evaluates
the success or failure of a command.

Exit Status
Commands (including the scripts and shell functions we write) issue a value
to the system when they terminate, called an exit status. This value, which is
an integer in the range of 0 to 255, indicates the success or failure of the
command’s execution. By convention, a value of 0 indicates success, and

334 Chapter 27

www.it-ebooks.info

http://www.it-ebooks.info/

any other value indicates failure. The shell provides a parameter that we can
use to examine the exit status. Here we see it in action:

[me@linuxbox ~]$ ls -d /usr/bin
/usr/bin
[me@linuxbox ~]$ echo $?
0
[me@linuxbox ~]$ ls -d /bin/usr
ls: cannot access /bin/usr: No such file or directory
[me@linuxbox ~]$ echo $?
2

In this example, we execute the ls command twice. The first time, the
command executes successfully. If we display the value of the parameter $?,
we see that it is 0. We execute the ls command a second time, producing an
error, and examine the parameter $? again. This time it contains a 2, indi-
cating that the command encountered an error. Some commands use differ-
ent exit-status values to provide diagnostics for errors, while many commands
simply exit with a value of 1 when they fail. Man pages often include a sec-
tion entitled “Exit Status,” which describes what codes are used. However, a
0 always indicates success.

The shell provides two extremely simple built-in commands that do
nothing except terminate with either a 0 or 1 exit status. The true com-
mand always executes successfully, and the false command always executes
unsuccessfully:

[me@linuxbox ~]$ true
[me@linuxbox ~]$ echo $?
0
[me@linuxbox ~]$ false
[me@linuxbox ~]$ echo $?
1

We can use these commands to see how the if statement works. What
the if statement really does is evaluate the success or failure of commands:

[me@linuxbox ~]$ if true; then echo "It's true."; fi
It's true.
[me@linuxbox ~]$ if false; then echo "It's true."; fi
[me@linuxbox ~]$

The command echo "It's true." is executed when the command follow-
ing if executes successfully, and it is not executed when the command fol-
lowing if does not execute successfully. If a list of commands follows if, the
last command in the list is evaluated:

[me@linuxbox ~]$ if false; true; then echo "It's true."; fi
It's true.
[me@linuxbox ~]$ if true; false; then echo "It's true."; fi
[me@linuxbox ~]$

Flow Control: Branching with if 335
www.it-ebooks.info

http://www.it-ebooks.info/

Using test
By far, the command used most frequently with if is test. The test com-
mand performs a variety of checks and comparisons. It has two equivalent
forms:

test expression

and the more popular

[expression]

where expression is an expression that is evaluated as either true or false.
The test command returns an exit status of 0 when the expression is true
and a status of 1 when the expression is false.

File Expressions
The expressions in Table 27-1 are used to evaluate the status of files.

Table 27-1: test File Expressions

Expression Is true if . . .

file1 -ef file2 file1 and file2 have the same inode numbers (the two
filenames refer to the same file by hard linking).

file1 -nt file2 file1 is newer than file2.

file1 -ot file2 file1 is older than file2.

-b file file exists and is a block-special (device) file.

-c file file exists and is a character-special (device) file.

-d file file exists and is a directory.

-e file file exists.

-f file file exists and is a regular file.

-g file file exists and is set-group-ID.

-G file file exists and is owned by the effective group ID.

-k file file exists and has its “sticky bit” set.

-L file file exists and is a symbolic link.

-O file file exists and is owned by the effective user ID.

-p file file exists and is a named pipe.

-r file file exists and is readable (has readable permission for
the effective user).

-s file file exists and has a length greater than zero.

336 Chapter 27

www.it-ebooks.info

http://www.it-ebooks.info/

Table 27-1 (continued)

Expression Is true if . . .

-S file file exists and is a network socket.

-t fd fd is a file descriptor directed to/from the terminal. This
can be used to determine whether standard input/output/
error is being redirected.

-u file file exists and is setuid.

-w file file exists and is writable (has write permission for the
effective user).

-x file file exists and is executable (has execute/search per-
mission for the effective user).

Here we have a script that demonstrates some of the file expressions:

#!/bin/bash

test-file: Evaluate the status of a file

FILE=~/.bashrc

if [-e "$FILE"]; then
if [-f "$FILE"]; then

echo "$FILE is a regular file."
fi
if [-d "$FILE"]; then

echo "$FILE is a directory."
fi
if [-r "$FILE"]; then

echo "$FILE is readable."
fi
if [-w "$FILE"]; then

echo "$FILE is writable."
fi
if [-x "$FILE"]; then

echo "$FILE is executable/searchable."
fi

else
echo "$FILE does not exist"
exit 1

fi

exit

The script evaluates the file assigned to the constant FILE and displays its
results as the evaluation is performed. There are two interesting things to
note about this script. First, notice how the parameter $FILE is quoted within
the expressions. This is not required, but it is a defense against the parameter
being empty. If the parameter expansion of $FILE were to result in an empty
value, it would cause an error (the operators would be interpreted as non-
null strings rather than operators). Using the quotes around the parameter

Flow Control: Branching with if 337
www.it-ebooks.info

http://www.it-ebooks.info/

ensures that the operator is always followed by a string, even if the string is
empty. Second, notice the presence of the exit commands near the end of
the script. The exit command accepts a single, optional argument, which
becomes the script’s exit status. When no argument is passed, the exit status
defaults to 0. Using exit in this way allows the script to indicate failure if $FILE
expands to the name of a nonexistent file. The exit command appearing on
the last line of the script is there as a formality. When a script runs off the end
(reaches end-of-file), it terminates with an exit status of 0 by default, anyway.

Similarly, shell functions can return an exit status by including an
integer argument to the return command. If we were to convert the script
above to a shell function to include it in a larger program, we could replace
the exit commands with return statements and get the desired behavior:

test_file () {

test-file: Evaluate the status of a file

FILE=~/.bashrc

if [-e "$FILE"]; then
if [-f "$FILE"]; then

echo "$FILE is a regular file."
fi
if [-d "$FILE"]; then

echo "$FILE is a directory."
fi
if [-r "$FILE"]; then

echo "$FILE is readable."
fi
if [-w "$FILE"]; then

echo "$FILE is writable."
fi
if [-x "$FILE"]; then

echo "$FILE is executable/searchable."
fi

else
echo "$FILE does not exist"
return 1

fi

}

String Expressions
The expressions in Table 27-2 are used to evaluate strings.

Table 27-2: test String Expressions

Expression Is true if . . .

string string is not null.

-n string The length of string is greater than zero.

338 Chapter 27

www.it-ebooks.info

http://www.it-ebooks.info/

Table 27-2 (continued)

Expression Is true if . . .

-z string The length of string is zero.

string1 = string2
string1 == string2

string1 and string2 are equal. Single or double
equal signs may be used, but the use of double equal
signs is greatly preferred.

string1 != string2 string1 and string2 are not equal.

string1 > string2 string1 sorts after string2.

string1 < string2 string1 sorts before string2.

Warning: The > and < expression operators must be quoted (or escaped with a backslash) when
used with test. If they are not, they will be interpreted by the shell as redirection oper-
ators, with potentially destructive results. Also note that while the bash documentation
states that the sorting order conforms to the collation order of the current locale, it does
not. ASCII (POSIX) order is used in versions of bash up to and including 4.0.

Here is a script that incorporates string expressions:

#!/bin/bash

test-string: evaluate the value of a string

ANSWER=maybe

if [-z "$ANSWER"]; then
echo "There is no answer." >&2
exit 1

fi

if ["$ANSWER" = "yes"]; then
echo "The answer is YES."

elif ["$ANSWER" = "no"]; then
echo "The answer is NO."

elif ["$ANSWER" = "maybe"]; then
echo "The answer is MAYBE."

else
echo "The answer is UNKNOWN."

fi

In this script, we evaluate the constant ANSWER. We first determine if the
string is empty. If it is, we terminate the script and set the exit status to 1.
Notice the redirection that is applied to the echo command. This redirects
the error message “There is no answer.” to standard error, which is the
“proper” thing to do with error messages. If the string is not empty, we
evaluate the value of the string to see if it is equal to either “yes,” “no,” or
“maybe.” We do this by using elif, which is short for else if. By using elif, we
are able to construct a more complex logical test.

Flow Control: Branching with if 339
www.it-ebooks.info

http://www.it-ebooks.info/

Integer Expressions
The expressions in Table 27-3 are used with integers.

Table 27-3: test Integer Expressions

Expression Is true if . . .

integer1 -eq integer2 integer1 is equal to integer2.

integer1 -ne integer2 integer1 is not equal to integer2.

integer1 -le integer2 integer1 is less than or equal to integer2.

integer1 -lt integer2 integer1 is less than integer2.

integer1 -ge integer2 integer1 is greater than or equal to integer2.

integer1 -gt integer2 integer1 is greater than integer2.

Here is a script that demonstrates them:

#!/bin/bash

test-integer: evaluate the value of an integer.

INT=-5

if [-z "$INT"]; then
echo "INT is empty." >&2
exit 1

fi

if [$INT -eq 0]; then
echo "INT is zero."

else
if [$INT -lt 0]; then

echo "INT is negative."
else

echo "INT is positive."
fi
if [$((INT % 2)) -eq 0]; then

echo "INT is even."
else

echo "INT is odd."
fi

fi

The interesting part of the script is how it determines whether an integer
is even or odd. By performing a modulo 2 operation on the number, which
divides the number by 2 and returns the remainder, it can tell if the number
is odd or even.

340 Chapter 27

www.it-ebooks.info

http://www.it-ebooks.info/

A More Modern Version of test
Recent versions of bash include a compound command that acts as an
enhanced replacement for test. It uses the following syntax:

[[expression]]

where expression is an expression that evaluates to either a true or false result.
The [[]] command is very similar to test (it supports all of its expressions)
but adds an important new string expression:

string1 =~ regex

which returns true if string1 is matched by the extended regular expression
regex. This opens up a lot of possibilities for performing such tasks as data
validation. In our earlier example of the integer expressions, the script would
fail if the constant INT contained anything except an integer. The script needs
a way to verify that the constant contains an integer. Using [[]] with the =~
string expression operator, we could improve the script this way:

#!/bin/bash

test-integer2: evaluate the value of an integer.

INT=-5

if [["$INT" =~ ^-?[0-9]+$]]; then
if [$INT -eq 0]; then

echo "INT is zero."
else

if [$INT -lt 0]; then
echo "INT is negative."

else
echo "INT is positive."

fi
if [$((INT % 2)) -eq 0]; then

echo "INT is even."
else

echo "INT is odd."
fi

fi
else

echo "INT is not an integer." >&2
exit 1

fi

By applying the regular expression, we are able to limit the value of INT to
only strings that begin with an optional minus sign, followed by one or more
numerals. This expression also eliminates the possibility of empty values.

Flow Control: Branching with if 341
www.it-ebooks.info

http://www.it-ebooks.info/

Another added feature of [[]] is that the == operator supports pattern
matching the same way pathname expansion does. For example:

[me@linuxbox ~]$ FILE=foo.bar
[me@linuxbox ~]$ if [[$FILE == foo.*]]; then
> echo "$FILE matches pattern 'foo.*'"
> fi
foo.bar matches pattern 'foo.*'

This makes [[]] useful for evaluating file- and pathnames.

(())—Designed for Integers
In addition to the [[]] compound command, bash also provides the (())
compound command, which is useful for operating on integers. It supports
a full set of arithmetic evaluations, a subject we will cover fully in Chapter 34.

(()) is used to perform arithmetic truth tests. An arithmetic truth test
results in true if the result of the arithmetic evaluation is non-zero.

[me@linuxbox ~]$ if ((1)); then echo "It is true."; fi
It is true.
[me@linuxbox ~]$ if ((0)); then echo "It is true."; fi
[me@linuxbox ~]$

Using (()), we can slightly simplify the test-integer2 script like this:

#!/bin/bash

test-integer2a: evaluate the value of an integer.

INT=-5

if [["$INT" =~ ^-?[0-9]+$]]; then
if ((INT == 0)); then

echo "INT is zero."
else

if ((INT < 0)); then
echo "INT is negative."

else
echo "INT is positive."

fi
if ((((INT % 2)) == 0)); then

echo "INT is even."
else

echo "INT is odd."
fi

fi
else

echo "INT is not an integer." >&2
exit 1

fi

342 Chapter 27

www.it-ebooks.info

http://www.it-ebooks.info/

Notice that we use less-than and greater-than signs and that == is used to
test for equivalence. This is a more natural-looking syntax for working with
integers. Notice too, that because the compound command (()) is part of
the shell syntax rather than an ordinary command, and it deals only with inte-
gers, it is able to recognize variables by name and does not require expansion
to be performed.

Combining Expressions
It’s also possible to combine expressions to create more complex evalu-
ations. Expressions are combined by using logical operators. We saw these
in Chapter 17, when we learned about the find command. There are three
logical operations for test and [[]]. They are AND, OR, and NOT. test
and [[]] use different operators to represent these operations, as shown
in Table 27-4.

Table 27-4: Logical Operators

Operation test [[]] and (())

AND -a &&

OR -o ||

NOT ! !

Here’s an example of an AND operation. The following script deter-
mines if an integer is within a range of values:

#!/bin/bash

test-integer3: determine if an integer is within a
specified range of values.

MIN_VAL=1
MAX_VAL=100

INT=50

if [["$INT" =~ ^-?[0-9]+$]]; then
if [[INT -ge MIN_VAL && INT -le MAX_VAL]]; then

echo "$INT is within $MIN_VAL to $MAX_VAL."
else

echo "$INT is out of range."
fi

else
 echo "INT is not an integer." >&2
 exit 1
fi

Flow Control: Branching with if 343
www.it-ebooks.info

http://www.it-ebooks.info/

In this script, we determine if the value of integer INT lies between
the values of MIN_VAL and MAX_VAL. This is performed by a single use of [[]],
which includes two expressions separated by the && operator. We could have
also coded this using test:

if [$INT -ge $MIN_VAL -a $INT -le $MAX_VAL]; then
echo "$INT is within $MIN_VAL to $MAX_VAL."

else
echo "$INT is out of range."

fi

The ! negation operator reverses the outcome of an expression. It
returns true if an expression is false, and it returns false if an expression is
true. In the following script, we modify the logic of our evaluation to find
values of INT that are outside the specified range:

#!/bin/bash

test-integer4: determine if an integer is outside a
specified range of values.

MIN_VAL=1
MAX_VAL=100

INT=50

if [["$INT" =~ ^-?[0-9]+$]]; then
if [[! (INT -ge MIN_VAL && INT -le MAX_VAL)]]; then

echo "$INT is outside $MIN_VAL to $MAX_VAL."
else

echo "$INT is in range."
fi

else
 echo "INT is not an integer." >&2
 exit 1
fi

We also include parentheses around the expression for grouping. If
these were not included, the negation would apply to only the first expres-
sion and not the combination of the two. Coding this with test would be
done this way:

if [! \($INT -ge $MIN_VAL -a $INT -le $MAX_VAL \)]; then
echo "$INT is outside $MIN_VAL to $MAX_VAL."

else
echo "$INT is in range."

fi

Since all expressions and operators used by test are treated as com-
mand arguments by the shell (unlike [[]] and (())), characters that have
special meaning to bash, such as <, >, (, and), must be quoted or escaped.

344 Chapter 27

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing that test and [[]] do roughly the same thing, which is prefer-
able? test is traditional (and part of POSIX), whereas [[]] is specific to
bash. It’s important to know how to use test, since it is very widely used, but
[[]] is clearly more useful and is easier to code.

P O R T A B I L I T Y I S T H E H O B G O B L I N O F L I T T L E M I N D S

If you talk to “real” Unix people, you quickly discover that many of them don’t
like Linux very much. They regard it as impure and unclean. One tenet of
Unix followers is that everything should be portable. This means that any script
you write should be able to run, unchanged, on any Unix-like system.

Unix people have good reason to believe this. Having seen what proprie-
tary extensions to commands and shells did to the Unix world before POSIX,
they are naturally wary of the effect of Linux on their beloved OS.

But portability has a serious downside. It prevents progress. It requires that
things are always done using “lowest common denominator” techniques. In the
case of shell programming, it means making everything compatible with sh, the
original Bourne shell.

This downside is the excuse that proprietary vendors use to justify their
proprietary extensions, only they call them “innovations.” But they are really
just lock-in devices for their customers.

The GNU tools, such as bash, have no such restrictions. They encourage
portability by supporting standards and by being universally available. You can
install bash and the other GNU tools on almost any kind of system, even Win-
dows, without cost. So feel free to use all the features of bash. It’s really portable.

Control Operators: Another Way to Branch
bash provides two control operators that can perform branching. The &&
(AND) and || (OR) operators work like the logical operators in the [[]]
compound command. This is the syntax:

command1 && command2

and

command1 || command2

It is important to understand the behavior of these. With the && oper-
ator, command1 is executed and command2 is executed if, and only if, command1 is
successful. With the || operator, command1 is executed and command2 is exe-
cuted if, and only if, command1 is unsuccessful.

Flow Control: Branching with if 345
www.it-ebooks.info

http://www.it-ebooks.info/

In practical terms, it means that we can do something like this:

[me@linuxbox ~]$ mkdir temp && cd temp

This will create a directory named temp, and if it succeeds, the current
working directory will be changed to temp. The second command is attempted
only if the mkdir command is successful. Likewise, a command like

[me@linuxbox ~]$ [-d temp] || mkdir temp

will test for the existence of the directory temp, and only if the test fails will
the directory be created. This type of construct is very handy for handling
errors in scripts, a subject we will discuss more in later chapters. For
example, we could do this in a script:

[-d temp] || exit 1

If the script requires the directory temp, and it does not exist, then the
script will terminate with an exit status of 1.

Final Note
We started this chapter with a question. How could we make our sys_info_page
script detect whether or not the user had permission to read all the home
directories? With our knowledge of if, we can solve the problem by adding
this code to the report_home_space function:

report_home_space () {
if [[$(id -u) -eq 0]]; then

cat <<- _EOF_
<H2>Home Space Utilization (All Users)</H2>
<PRE>$(du -sh /home/*)</PRE>
EOF

else
cat <<- _EOF_

<H2>Home Space Utilization ($USER)</H2>
<PRE>$(du -sh $HOME)</PRE>
EOF

fi
return

}

We evaluate the output of the id command. With the -u option, id out-
puts the numeric user ID number of the effective user. The superuser is
always zero, and every other user is a number greater than zero. Knowing
this, we can construct two different here documents, one taking advantage
of superuser privileges and the other restricted to the user’s own home
directory.

We are going to take a break from the sys_info_page program, but don’t
worry. It will be back. In the meantime, we’ll cover some topics that we’ll
need when we resume our work.

346 Chapter 27

www.it-ebooks.info

http://www.it-ebooks.info/

R E A D I N G K E Y B O A R D I N P U T

The scripts we have written so far lack a feature com-
mon to most computer programs—interactivity, the
ability of the program to interact with the user. While
many programs don’t need to be interactive, some pro-
grams benefit from being able to accept input directly
from the user. Take, for example, this script from the
previous chapter:

#!/bin/bash

test-integer2: evaluate the value of an integer.

INT=-5

if [["$INT" =~ ^-?[0-9]+$]]; then
if [$INT -eq 0]; then

echo "INT is zero."
else

if [$INT -lt 0]; then
echo "INT is negative."

www.it-ebooks.info

http://www.it-ebooks.info/

else
echo "INT is positive."

fi
if [$((INT % 2)) -eq 0]; then

echo "INT is even."
else

echo "INT is odd."
fi

fi
else

echo "INT is not an integer." >&2
exit 1

fi

Each time we want to change the value of INT, we have to edit the script.
The script would be much more useful if it could ask the user for a value.
In this chapter, we will begin to look at how we can add interactivity to our
programs.

read—Read Values from Standard Input
The read built-in command is used to read a single line of standard input.
This command can be used to read keyboard input or, when redirection is
employed, a line of data from a file. The command has the following syntax:

read [-options] [variable...]

where options is one or more of the available options listed in Table 28-1 and
variable is the name of one or more variables used to hold the input value.
If no variable name is supplied, the shell variable REPLY contains the line
of data.

Table 28-1: read Options

Option Description

-a array Assign the input to array, starting with index zero. We will
cover arrays in Chapter 35.

-d delimiter The first character in the string delimiter is used to indicate
end of input, rather than a newline character.

-e Use Readline to handle input. This permits input editing in
the same manner as the command line.

-n num Read num characters of input, rather than an entire line.

-p prompt Display a prompt for input using the string prompt.

-r Raw mode. Do not interpret backslash characters as escapes.

348 Chapter 28

www.it-ebooks.info

http://www.it-ebooks.info/

Table 28-1 (continued)

Option Description

-s Silent mode. Do not echo characters to the display as they
are typed. This is useful when inputting passwords and
other confidential information.

-t seconds Timeout. Terminate input after seconds. read returns a non-
zero exit status if an input times out.

-u fd Use input from file descriptor fd, rather than standard input.

Basically, read assigns fields from standard input to the specified vari-
ables. If we modify our integer evaluation script to use read, it might look
like this:

#!/bin/bash

read-integer: evaluate the value of an integer.

echo -n "Please enter an integer -> "
read int

if [["$int" =~ ^-?[0-9]+$]]; then
if [$int -eq 0]; then

echo "$int is zero."
else

if [$int -lt 0]; then
echo "$int is negative."

else
echo "$int is positive."

fi
if [$((int % 2)) -eq 0]; then

echo "$int is even."
else

echo "$int is odd."
fi

fi
else

echo "Input value is not an integer." >&2
exit 1

fi

We use echo with the -n option (which suppresses the trailing newline on
output) to display a prompt and then use read to input a value for the vari-
able int. Running this script results in this:

[me@linuxbox ~]$ read-integer
Please enter an integer -> 5
5 is positive.
5 is odd.

Reading Keyboard Input 349
www.it-ebooks.info

http://www.it-ebooks.info/

read can assign input to multiple variables, as shown in this script:

#!/bin/bash

read-multiple: read multiple values from keyboard

echo -n "Enter one or more values > "
read var1 var2 var3 var4 var5

echo "var1 = '$var1'"
echo "var2 = '$var2'"
echo "var3 = '$var3'"
echo "var4 = '$var4'"
echo "var5 = '$var5'"

In this script, we assign and display up to five values. Notice how read
behaves when given different numbers of values:

[me@linuxbox ~]$ read-multiple
Enter one or more values > a b c d e
var1 = 'a'
var2 = 'b'
var3 = 'c'
var4 = 'd'
var5 = 'e'
[me@linuxbox ~]$ read-multiple
Enter one or more values > a
var1 = 'a'
var2 = ''
var3 = ''
var4 = ''
var5 = ''
[me@linuxbox ~]$ read-multiple
Enter one or more values > a b c d e f g
var1 = 'a'
var2 = 'b'
var3 = 'c'
var4 = 'd'
var5 = 'e f g'

If read receives fewer than the expected number, the extra variables are
empty, while an excessive amount of input results in the final variable con-
taining all of the extra input.

If no variables are listed after the read command, a shell variable, REPLY,
will be assigned all the input:

#!/bin/bash

read-single: read multiple values into default variable

echo -n "Enter one or more values > "
read

echo "REPLY = '$REPLY'"

350 Chapter 28

www.it-ebooks.info

http://www.it-ebooks.info/

Running this script results in this:

[me@linuxbox ~]$ read-single
Enter one or more values > a b c d
REPLY = 'a b c d'

Options
read supports the options shown previously in Table 28-1.

Using the various options, we can do interesting things with read. For
example, with the -p option, we can provide a prompt string:

#!/bin/bash

read-single: read multiple values into default variable

read -p "Enter one or more values > "

echo "REPLY = '$REPLY'"

With the -t and -s options we can write a script that reads “secret” input
and times out if the input is not completed in a specified time:

#!/bin/bash

read-secret: input a secret passphrase

if read -t 10 -sp "Enter secret passphrase > " secret_pass; then
echo -e "\nSecret passphrase = '$secret_pass'"

else
echo -e "\nInput timed out" >&2
exit 1

fi

The script prompts the user for a secret passphrase and waits 10 seconds
for input. If the entry is not completed within the specified time, the script
exits with an error. Since the -s option is included, the characters of the
passphrase are not echoed to the display as they are typed.

Separating Input Fields with IFS
Normally, the shell performs word splitting on the input provided to read.
As we have seen, this means that multiple words separated by one or more
spaces become separate items on the input line and are assigned to separate
variables by read. This behavior is configured by a shell variable named IFS
(for Internal Field Separator). The default value of IFS contains a space, a
tab, and a newline character, each of which will separate items from one
another.

We can adjust the value of IFS to control the separation of fields input to
read. For example, the /etc/passwd file contains lines of data that use the colon
character as a field separator. By changing the value of IFS to a single colon,

Reading Keyboard Input 351
www.it-ebooks.info

http://www.it-ebooks.info/

we can use read to input the contents of /etc/passwd and successfully separate
fields into different variables. Here we have a script that does just that:

#!/bin/bash

read-ifs: read fields from a file

FILE=/etc/passwd

read -p "Enter a username > " user_name

file_info=$(grep "^$user_name:" $FILE)

if [-n "$file_info"]; then
IFS=":" read user pw uid gid name home shell <<< "$file_info"
echo "User = '$user'"
echo "UID = '$uid'"
echo "GID = '$gid'"
echo "Full Name = '$name'"
echo "Home Dir. = '$home'"
echo "Shell = '$shell'"

else
echo "No such user '$user_name'" >&2
exit 1

fi

This script prompts the user to enter the username of an account on
the system and then displays the different fields found in the user’s record
in the /etc/passwd file. The script contains two interesting lines. The first,
at , assigns the results of a grep command to the variable file_info. The
regular expression used by grep ensures that the username will match only
a single line in the /etc/passwd file.

The second interesting line, at , consists of three parts: a variable
assignment, a read command with a list of variable names as arguments, and
a strange new redirection operator. We’ll look at the variable assignment
first.

The shell allows one or more variable assignments to take place imme-
diately before a command. These assignments alter the environment for
the command that follows. The effect of the assignment is temporary, only
changing the environment for the duration of the command. In our case,
the value of IFS is changed to a colon character. Alternatively, we could have
coded it this way:

OLD_IFS="$IFS"
IFS=":"
read user pw uid gid name home shell <<< "$file_info"
IFS="$OLD_IFS"

where we store the value of IFS, assign a new value, perform the read com-
mand, and then restore IFS to its original value. Clearly, placing the variable
assignment in front of the command is a more concise way of doing the
same thing.

352 Chapter 28

www.it-ebooks.info

http://www.it-ebooks.info/

The <<< operator indicates a here string. A here string is like a here doc-
ument, only shorter, consisting of a single string. In our example, the line
of data from the /etc/passwd file is fed to the standard input of the read
command. We might wonder why this rather oblique method was chosen
rather than

echo "$file_info" | IFS=":" read user pw uid gid name home shell

Well, there’s a reason . . .

Y O U C A N ’ T P I P E R E A D

While the read command normally takes input from standard input, you cannot
do this:

echo "foo" | read

We would expect this to work, but it does not. The command will appear
to succeed, but the REPLY variable will always be empty. Why is this?

The explanation has to do with the way the shell handles pipelines. In bash
(and other shells such as sh), pipelines create subshells. These are copies of the
shell and its environment that are used to execute the command in the pipe-
line. In our previous example, read is executed in a subshell.

Subshells in Unix-like systems create copies of the environment for the
processes to use while they execute. When the processes finish, the copy of the
environment is destroyed. This means that a subshell can never alter the environ-
ment of its parent process. read assigns variables, which then become part of the
environment. In the example above, read assigns the value foo to the variable
REPLY in its subshell’s environment, but when the command exits, the subshell
and its environment are destroyed, and the effect of the assignment is lost.

Using here strings is one way to work around this behavior. Another
method is discussed in Chapter 36.

Validating Input
With our new ability to have keyboard input comes an additional program-
ming challenge: validating input. Very often the difference between a well-
written program and a poorly written one lies in the program’s ability to
deal with the unexpected. Frequently, the unexpected appears in the form
of bad input. We did a little of this with our evaluation programs in the pre-
vious chapter, where we checked the values of integers and screened out
empty values and non-numeric characters. It is important to perform these
kinds of programming checks every time a program receives input to guard
against invalid data. This is especially important for programs that are shared
by multiple users. Omitting these safeguards in the interests of economy
might be excused if a program is to be used once and only by the author to

Reading Keyboard Input 353
www.it-ebooks.info

http://www.it-ebooks.info/

perform some special task. Even then, if the program performs dangerous
tasks such as deleting files, it would be wise to include data validation, just
in case.

Here we have an example program that validates various kinds of input:

#!/bin/bash

read-validate: validate input

invalid_input () {
echo "Invalid input '$REPLY'" >&2
exit 1

}

read -p "Enter a single item > "

input is empty (invalid)
[[-z $REPLY]] && invalid_input

input is multiple items (invalid)
(($(echo $REPLY | wc -w) > 1)) && invalid_input

is input a valid filename?
if [[$REPLY =~ ^[-[:alnum:]\._]+$]]; then

echo "'$REPLY' is a valid filename."
if [[-e $REPLY]]; then

echo "And file '$REPLY' exists."
else

echo "However, file '$REPLY' does not exist."
fi

is input a floating point number?
if [[$REPLY =~ ^-?[[:digit:]]*\.[[:digit:]]+$]]; then

echo "'$REPLY' is a floating point number."
else

echo "'$REPLY' is not a floating point number."
fi

is input an integer?
if [[$REPLY =~ ^-?[[:digit:]]+$]]; then

echo "'$REPLY' is an integer."
else

echo "'$REPLY' is not an integer."
fi

else
echo "The string '$REPLY' is not a valid filename."

fi

This script prompts the user to enter an item. The item is subsequently
analyzed to determine its contents. As we can see, the script makes use of
many of the concepts that we have covered thus far, including shell func-
tions, [[]], (()), the control operator &&, and if, as well as a healthy dose
of regular expressions.

354 Chapter 28

www.it-ebooks.info

http://www.it-ebooks.info/

Menus
A common type of interactivity is called menu driven. In menu-driven pro-
grams, the user is presented with a list of choices and is asked to choose one.
For example, we could imagine a program that presented the following:

Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit

Enter selection [0-3] >

Using what we learned from writing our sys_info_page program, we can
construct a menu-driven program to perform the tasks on the above menu:

#!/bin/bash

read-menu: a menu driven system information program

clear
echo "
Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit
"
read -p "Enter selection [0-3] > "

if [[$REPLY =~ ^[0-3]$]]; then
if [[$REPLY == 0]]; then

echo "Program terminated."
exit

fi
if [[$REPLY == 1]]; then

echo "Hostname: $HOSTNAME"
uptime
exit

fi
if [[$REPLY == 2]]; then

df -h
exit

fi
if [[$REPLY == 3]]; then

if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
exit

fi

Reading Keyboard Input 355
www.it-ebooks.info

http://www.it-ebooks.info/

else
echo "Invalid entry." >&2
exit 1

fi

This script is logically divided into two parts. The first part displays the
menu and inputs the response from the user. The second part identifies
the response and carries out the selected action. Notice the use of the exit
command in this script. It is used here to prevent the script from executing
unnecessary code after an action has been carried out. The presence of mul-
tiple exit points in a program is generally a bad idea (it makes program
logic harder to understand), but it works in this script.

Final Note
In this chapter, we took our first steps toward interactivity, allowing users to
input data into our programs via the keyboard. Using the techniques pre-
sented thus far, it is possible to write many useful programs, such as special-
ized calculation programs and easy-to-use frontends for arcane command-
line tools. In the next chapter, we will build on the menu-driven program
concept to make it even better.

Extra Credit
It is important to study the programs in this chapter carefully and have a com-
plete understanding of the way they are logically structured, as the programs
to come will be increasingly complex. As an exercise, rewrite the programs
in this chapter using the test command rather than the [[]] compound com-
mand. Hint: Use grep to evaluate the regular expressions, and then evaluate
its exit status. This will be good practice.

356 Chapter 28

www.it-ebooks.info

http://www.it-ebooks.info/

F L O W C O N T R O L : L O O P I N G
W I T H W H I L E A N D U N T I L

In the previous chapter, we developed a menu-driven
program to produce various kinds of system informa-
tion. The program works, but it still has a significant
usability problem. It executes only a single choice
and then terminates. Even worse, if an invalid selection is made, the pro-
gram terminates with an error, without giving the user an opportunity to try
again. It would be better if we could somehow construct the program so that
it could repeat the menu display and selection over and over, until the user
chooses to exit the program.

In this chapter, we will look at a programming concept called looping,
which can be used to make portions of programs repeat. The shell provides
three compound commands for looping. We will look at two of them in this
chapter and the third in Chapter 33.

www.it-ebooks.info

http://www.it-ebooks.info/

Looping
Daily life is full of repeated activities. Going to work each day, walking the
dog, and slicing a carrot are all tasks that involve repeating a series of steps.
Let’s consider slicing a carrot. If we express this activity in pseudocode, it
might look something like this:

1. Get cutting board.

2. Get knife.

3. Place carrot on cutting board.

4. Lift knife.

5. Advance carrot.

6. Slice carrot.

7. If entire carrot sliced, then quit, else go to step 4.

Steps 4 through 7 form a loop. The actions within the loop are repeated
until the condition, “entire carrot sliced,” is reached.

while
bash can express a similar idea. Let’s say we wanted to display five numbers
in sequential order from 1 to 5. A bash script could be constructed as follows:

#!/bin/bash

while-count: display a series of numbers

count=1

while [$count -le 5]; do
echo $count
count=$((count + 1))

done
echo "Finished."

When executed, this script displays the following:

[me@linuxbox ~]$ while-count
1
2
3
4
5
Finished.

The syntax of the while command is:

while commands; do commands; done

358 Chapter 29

www.it-ebooks.info

http://www.it-ebooks.info/

Like if, while evaluates the exit status of a list of commands. As long as
the exit status is 0, it performs the commands inside the loop. In the script
above, the variable count is created and assigned an initial value of 1. The
while command evaluates the exit status of the test command. As long as the
test command returns an exit status of 0, the commands within the loop are
executed. At the end of each cycle, the test command is repeated. After six
iterations of the loop, the value of count has increased to 6, the test com-
mand no longer returns an exit status of 0, and the loop terminates. The
program continues with the next statement following the loop.

We can use a while loop to improve the read-menu program from
Chapter 28:

#!/bin/bash

while-menu: a menu driven system information program

DELAY=3 # Number of seconds to display results

while [[$REPLY != 0]]; do
clear
cat <<- _EOF_

Please Select:

 1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit

EOF
read -p "Enter selection [0-3] > "

if [[$REPLY =~ ^[0-3]$]]; then
if [[$REPLY == 1]]; then

echo "Hostname: $HOSTNAME"
uptime
sleep $DELAY

fi
if [[$REPLY == 2]]; then

df -h
sleep $DELAY

fi
if [[$REPLY == 3]]; then

if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
sleep $DELAY

fi
else

echo "Invalid entry."
sleep $DELAY

fi
done
echo "Program terminated."

Flow Control: Looping with while and until 359
www.it-ebooks.info

http://www.it-ebooks.info/

By enclosing the menu in a while loop, we are able to have the program
repeat the menu display after each selection. The loop continues as long as
REPLY is not equal to 0 and the menu is displayed again, giving the user the
opportunity to make another selection. At the end of each action, a sleep
command is executed so the program will pause for a few seconds to allow
the results of the selection to be seen before the screen is cleared and the
menu is redisplayed. Once REPLY is equal to 0, indicating the “quit” selection,
the loop terminates and execution continues with the line following done.

Breaking out of a Loop
bash provides two built-in commands that can be used to control program
flow inside loops. The break command immediately terminates a loop, and
program control resumes with the next statement following the loop. The
continue command causes the remainder of the loop to be skipped, and pro-
gram control resumes with the next iteration of the loop. Here we see a ver-
sion of the while-menu program incorporating both break and continue:

#!/bin/bash

while-menu2: a menu driven system information program

DELAY=3 # Number of seconds to display results

while true; do
clear
cat <<- _EOF_

Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit

EOF
read -p "Enter selection [0-3] > "

if [[$REPLY =~ ^[0-3]$]]; then
if [[$REPLY == 1]]; then

echo "Hostname: $HOSTNAME"
uptime
sleep $DELAY
continue

fi
if [[$REPLY == 2]]; then

df -h
sleep $DELAY
continue

fi
if [[$REPLY == 3]]; then

if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

360 Chapter 29

www.it-ebooks.info

http://www.it-ebooks.info/

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
sleep $DELAY
continue

fi
if [[$REPLY == 0]]; then

break
fi

else
echo "Invalid entry."
sleep $DELAY

fi
done
echo "Program terminated."

In this version of the script, we set up an endless loop (one that never ter-
minates on its own) by using the true command to supply an exit status to
while. Since true will always exit with a exit status of 0, the loop will never end.
This is a surprisingly common scripting technique. Since the loop will never
end on its own, it’s up to the programmer to provide some way to break out
of the loop when the time is right. In this script, the break command is used
to exit the loop when the 0 selection is chosen. The continue command has
been included at the end of the other script choices to allow for more effi-
cient execution. By using continue, the script will skip over code that is not
needed when a selection is identified. For example, if the 1 selection is
chosen and identified, there is no reason to test for the other selections.

until
The until command is much like while, except instead of exiting a loop
when a non-zero exit status is encountered, it does the opposite. An until
loop continues until it receives a 0 exit status. In our while-count script, we
continued the loop as long as the value of the count variable was less than or
equal to 5. We could get the same result by coding the script with until:

#!/bin/bash

until-count: display a series of numbers

count=1

until [$count -gt 5]; do
echo $count
count=$((count + 1))

done
echo "Finished."

By changing the test expression to $count -gt 5, until will terminate
the loop at the correct time. Deciding whether to use the while or until
loop is usually a matter of choosing the one that allows the clearest test
to be written.

Flow Control: Looping with while and until 361
www.it-ebooks.info

http://www.it-ebooks.info/

Reading Files with Loops
while and until can process standard input. This allows files to be processed
with while and until loops. In the following example, we will display the con-
tents of the distros.txt file used in earlier chapters:

#!/bin/bash

while-read: read lines from a file

while read distro version release; do
printf "Distro: %s\tVersion: %s\tReleased: %s\n" \

$distro \
$version \
$release

done < distros.txt

To redirect a file to the loop, we place the redirection operator after the
done statement. The loop will use read to input the fields from the redirected
file. The read command will exit after each line is read, with a 0 exit status
until the end-of-file is reached. At that point, it will exit with a non-zero
exit status, thereby terminating the loop. It is also possible to pipe standard
input into a loop:

#!/bin/bash

while-read2: read lines from a file

sort -k 1,1 -k 2n distros.txt | while read distro version release; do
printf "Distro: %s\tVersion: %s\tReleased: %s\n" \

$distro \
$version \
$release

done

Here we take the output of the sort command and display the stream of
text. However, it is important to remember that since a pipe will execute the
loop in a subshell, any variables created or assigned within the loop will be
lost when the loop terminates.

Final Note
With the introduction of loops and our previous encounters with branching,
subroutines, and sequences, we have covered the major types of flow control
used in programs. bash has some more tricks up its sleeve, but they are refine-
ments on these basic concepts.

362 Chapter 29

www.it-ebooks.info

http://www.it-ebooks.info/

T R O U B L E S H O O T I N G

As our scripts become more complex, it’s time to take
a look at what happens when things go wrong and they
don’t do what we want. In this chapter, we’ll look at
some of the common kinds of errors that occur in
scripts and describe a few techniques that can be used
to track down and eradicate problems.

Syntactic Errors
One general class of errors is syntactic. Syntactic errors involve mistyping
some element of shell syntax. In most cases, these kinds of errors will lead
to the shell refusing to execute the script.

In the following discussions, we will use this script to demonstrate com-
mon types of errors:

#!/bin/bash

trouble: script to demonstrate common errors

www.it-ebooks.info

http://www.it-ebooks.info/

number=1

if [$number = 1]; then
echo "Number is equal to 1."

else
echo "Number is not equal to 1."

fi

As written, this script runs successfully:

[me@linuxbox ~]$ trouble
Number is equal to 1.

Missing Quotes
Let’s edit our script and remove the trailing quote from the argument fol-
lowing the first echo command:

#!/bin/bash

trouble: script to demonstrate common errors

number=1

if [$number = 1]; then
echo "Number is equal to 1.

else
echo "Number is not equal to 1."

fi

Watch what happens:

[me@linuxbox ~]$ trouble
/home/me/bin/trouble: line 10: unexpected EOF while looking for matching `"'
/home/me/bin/trouble: line 13: syntax error: unexpected end of file

It generates two errors. Interestingly, the line numbers reported are
not where the missing quote was removed but rather much later in the pro-
gram. We can see why if we follow the program after the missing quote. bash
will continue looking for the closing quote until it finds one, which it does
immediately after the second echo command. bash becomes very confused
after that, and the syntax of the if command is broken because the fi state-
ment is now inside a quoted (but open) string.

In long scripts, this kind of error can be quite hard to find. Using an
editor with syntax highlighting will help. If a complete version of vim is
installed, syntax highlighting can be enabled by entering the command:

:syntax on

364 Chapter 30

www.it-ebooks.info

http://www.it-ebooks.info/

Missing or Unexpected Tokens
Another common mistake is forgetting to complete a compound command,
such as if or while. Let’s look at what happens if we remove the semicolon
after the test in the if command.

#!/bin/bash

trouble: script to demonstrate common errors

number=1

if [$number = 1] then
echo "Number is equal to 1."

else
echo "Number is not equal to 1."

fi

The result is this:

[me@linuxbox ~]$ trouble
/home/me/bin/trouble: line 9: syntax error near unexpected token `else'
/home/me/bin/trouble: line 9: `else'

Again, the error message points to a error that occurs later than the
actual problem. What happens is really pretty interesting. As we recall, if
accepts a list of commands and evaluates the exit code of the last command
in the list. In our program, we intend this list to consist of a single command,
[, a synonym for test. The [command takes what follows it as a list of argu-
ments—in our case, four arguments: $number, =, 1, and]. With the semicolon
removed, the word then is added to the list of arguments, which is syntac-
tically legal. The following echo command is legal, too. It’s interpreted as
another command in the list of commands that if will evaluate for an exit
code. The else is encountered next, but it’s out of place, since the shell
recognizes it as a reserved word (a word that has special meaning to the shell)
and not the name of a command. Hence the error message.

Unanticipated Expansions
It’s possible to have errors that occur only intermittently in a script. Some-
times the script will run fine, and other times it will fail because of the results
of an expansion. If we return our missing semicolon and change the value of
number to an empty variable, we can demonstrate:

#!/bin/bash

trouble: script to demonstrate common errors

number=

Troubleshooting 365
www.it-ebooks.info

http://www.it-ebooks.info/

if [$number = 1]; then
echo "Number is equal to 1."

else
echo "Number is not equal to 1."

fi

Running the script with this change results in the output:

[me@linuxbox ~]$ trouble
/home/me/bin/trouble: line 7: [: =: unary operator expected
 Number is not equal to 1.

We get this rather cryptic error message, followed by the output of the
second echo command. The problem is the expansion of the number variable
within the test command. When the command

[$number = 1]

undergoes expansion with number being empty, the result is this:

[= 1]

which is invalid, and the error is generated. The = operator is a binary oper-
ator (it requires a value on each side), but the first value is missing, so the
test command expects a unary operator (such as -z) instead. Further, since
the test failed (because of the error), the if command receives a non-zero
exit code and acts accordingly, and the second echo command is executed.

This problem can be corrected by adding quotes around the first argu-
ment in the test command:

["$number" = 1]

Then when expansion occurs, the result will be this:

["" = 1]

which yields the correct number of arguments. In addition to being used
with empty strings, quotes should be used in cases where a value could
expand into multiword strings, as with filenames containing embedded
spaces.

Logical Errors
Unlike syntactic errors, logical errors do not prevent a script from running.
The script will run, but it will not produce the desired result due to a prob-
lem with its logic. There are countless numbers of possible logical errors,
but here are a few of the most common kinds found in scripts:

Incorrect conditional expressions. It’s easy to incorrectly code an
if/then/else statement and have the wrong logic carried out. Some-
times the logic will be reversed, or it will be incomplete.

366 Chapter 30

www.it-ebooks.info

http://www.it-ebooks.info/

“Off by one” errors. When coding loops that employ counters, it is pos-
sible to overlook that the loop may require that the counting start with
0, rather than 1, for the count to conclude at the correct point. These
kinds of errors result in either a loop “going off the end” by counting
too far, or else missing the last iteration of the loop by terminating one
iteration too soon.

Unanticipated situations. Most logical errors result from a program
encountering data or situations that were unforeseen by the program-
mer. These can also include unanticipated expansions, such as a filename
that contains embedded spaces that expands into multiple command
arguments rather than a single filename.

Defensive Programming
It is important to verify assumptions when programming. This means a care-
ful evaluation of the exit status of programs and commands that are used by
a script. Here is an example, based on a true story. An unfortunate system
administrator wrote a script to perform a maintenance task on an important
server. The script contained the following two lines of code:

cd $dir_name
rm *

There is nothing intrinsically wrong with these two lines, as long as the
directory named in the variable, dir_name, exists. But what happens if it does
not? In that case, the cd command fails, and the script continues to the next
line and deletes the files in the current working directory. Not the desired
outcome at all! The hapless administrator destroyed an important part of
the server because of this design decision.

Let’s look at some ways this design could be improved. First, it might be
wise to make the execution of rm contingent on the success of cd:

cd $dir_name && rm *

This way, if the cd command fails, the rm command is not carried out.
This is better, but it still leaves open the possibility that the variable, dir_name,
is unset or empty, which would result in the files in the user’s home direc-
tory being deleted. This could also be avoided by checking to see that dir_name
actually contains the name of an existing directory:

[[-d $dir_name]] && cd $dir_name && rm *

Often, it is best to terminate the script with an error when an situation
such as the one above occurs:

if [[-d $dir_name]]; then
if cd $dir_name; then

rm *

Troubleshooting 367
www.it-ebooks.info

http://www.it-ebooks.info/

else
echo "cannot cd to '$dir_name'" >&2
exit 1

fi
else

echo "no such directory: '$dir_name'" >&2
exit 1

fi

Here, we check both the name, to see that it is that of an existing direc-
tory, and the success of the cd command. If either fails, a descriptive error
message is sent to standard error, and the script terminates with an exit
status of 1 to indicate a failure.

Verifying Input
A general rule of good programming is that if a program accepts input,
it must be able to deal with anything it receives. This usually means that
input must be carefully screened to ensure that only valid input is accepted
for further processing. We saw an example of this in the previous chapter
when we studied the read command. One script contained the following
test to verify a menu selection:

[[$REPLY =~ ^[0-3]$]]

This test is very specific. It will return a 0 exit status only if the string
returned by the user is a numeral in the range of 0 to 3. Nothing else will
be accepted. Sometimes these sorts of tests can be very challenging to write,
but the effort is necessary to produce a high-quality script.

D E S I G N I S A F U N C T I O N O F T I M E

When I was a college student studying industrial design, a wise professor stated
that the degree of design on a project was determined by the amount of time
given to the designer. If you were given 5 minutes to design a device that kills
flies, you designed a flyswatter. If you were given 5 months, you might come up
with a laser-guided “anti-fly system” instead.

The same principle applies to programming. Sometimes a “quick-and-
dirty” script will do if it’s going to be used only once and only by the program-
mer. That kind of script is common and should be developed quickly to make
the effort economical. Such scripts don’t need a lot of comments and defensive
checks. On the other hand, if a script is intended for production use, that is, a
script that will be used over and over for an important task or by multiple users,
it needs much more careful development.

368 Chapter 30

www.it-ebooks.info

http://www.it-ebooks.info/

Testing
Testing is an important step in every kind of software development, includ-
ing scripts. There is a saying in the open source world, “release early, release
often,” that reflects this fact. By releasing early and often, software gets more
exposure to use and testing. Experience has shown that bugs are much easier
to find, and much less expensive to fix, if they are found early in the devel-
opment cycle.

Stubs
In a previous discussion, we saw how stubs can be used to verify program
flow. From the earliest stages of script development, they are a valuable
technique to check the progress of our work.

Let’s look at the previous file-deletion problem and see how this could
be coded for easy testing. Testing the original fragment of code would be
dangerous, since its purpose is to delete files, but we could modify the code
to make the test safe:

if [[-d $dir_name]]; then
if cd $dir_name; then

echo rm * # TESTING
else

echo "cannot cd to '$dir_name'" >&2
exit 1

fi
else

echo "no such directory: '$dir_name'" >&2
exit 1

fi
exit # TESTING

Since the error conditions already output useful messages, we don’t
have to add any. The most important change is placing an echo command
just before the rm command to allow the command and its expanded argu-
ment list to be displayed, rather than executed. This change allows safe exe-
cution of the code. At the end of the code fragment, we place an exit com-
mand to conclude the test and prevent any other part of the script from
being carried out. The need for this will vary according to the design of
the script.

We also include some comments that act as “markers” for our test-
related changes. These can be used to help find and remove the changes
when testing is complete.

Test Cases
To perform useful testing, it’s important to develop and apply good test cases.
This is done by carefully choosing input data or operating conditions that

Troubleshooting 369
www.it-ebooks.info

http://www.it-ebooks.info/

reflect edge and corner cases. In our code fragment (which is very simple), we
want to know how the code performs under three specific conditions:

dir_name contains the name of an existing directory.

dir_name contains the name of a nonexistent directory.

dir_name is empty.

By performing the test with each of these conditions, good test coverage is
achieved.

Just as with design, testing is a function of time, as well. Not every script
feature needs to be extensively tested. It’s really a matter of determining
what is most important. Since it could be very destructive if it malfunctioned,
our code fragment deserves careful consideration during both its design
and its testing.

Debugging
If testing reveals a problem with a script, the next step is debugging. “A
problem” usually means that the script is, in some way, not performing to
the programmer’s expectations. If this is the case, we need to carefully
determine exactly what the script is actually doing and why. Finding bugs
can sometimes involve a lot of detective work.

A well-designed script will try to help. It should be programmed defen-
sively to detect abnormal conditions and provide useful feedback to the user.
Sometimes, however, problems are strange and unexpected, and more
involved techniques are required.

Finding the Problem Area
In some scripts, particularly long ones, it is sometimes useful to isolate the
area of the script that is related to the problem. This won’t always be the
actual error, but isolation will often provide insights into the actual cause.
One technique that can be used to isolate code is “commenting out” sec-
tions of a script. For example, our file-deletion fragment could be modified
to determine if the removed section was related to an error:

if [[-d $dir_name]]; then
if cd $dir_name; then

rm *
else

echo "cannot cd to '$dir_name'" >&2
exit 1

fi
else
echo "no such directory: '$dir_name'" >&2
exit 1
fi

370 Chapter 30

www.it-ebooks.info

http://www.it-ebooks.info/

By placing comment symbols at the beginning of each line in a logical
section of a script, we prevent that section from being executed. Testing can
then be performed again to see if the removal of the code has any impact
on the behavior of the bug.

Tracing
Bugs are often cases of unexpected logical flow within a script. That is, por-
tions of the script are either never executed or are executed in the wrong
order or at the wrong time. To view the actual flow of the program, we use a
technique called tracing.

One tracing method involves placing informative messages in a script
that display the location of execution. We can add messages to our code
fragment:

echo "preparing to delete files" >&2
if [[-d $dir_name]]; then

if cd $dir_name; then
echo "deleting files" >&2

rm *
else

echo "cannot cd to '$dir_name'" >&2
exit 1

fi
else

echo "no such directory: '$dir_name'" >&2
exit 1

fi
echo "file deletion complete" >&2

We send the messages to standard error to separate them from normal
output. We also do not indent the lines containing the messages, so it is
easier to find when it’s time to remove them.

Now when the script is executed, it’s possible to see that the file dele-
tion has been performed:

[me@linuxbox ~]$ deletion-script
preparing to delete files
deleting files
file deletion complete
[me@linuxbox ~]$

bash also provides a method of tracing, implemented by the -x option
and the set command with the -x option. Using our earlier trouble script,
we can activate tracing for the entire script by adding the -x option to the
first line:

#!/bin/bash -x

trouble: script to demonstrate common errors

number=1

Troubleshooting 371
www.it-ebooks.info

http://www.it-ebooks.info/

if [$number = 1]; then
echo "Number is equal to 1."

else
echo "Number is not equal to 1."

fi

When executed, the results look like this:

[me@linuxbox ~]$ trouble
+ number=1
+ '[' 1 = 1 ']'
+ echo 'Number is equal to 1.'
Number is equal to 1.

With tracing enabled, we see the commands performed with expansions
applied. The leading plus signs indicate the display of the trace to distinguish
them from lines of regular output. The plus sign is the default character for
trace output. It is contained in the PS4 (prompt string 4) shell variable. The
contents of this variable can be adjusted to make the prompt more useful.
Here, we modify it to include the current line number in the script where the
trace is performed. Note that single quotes are required to prevent expan-
sion until the prompt is actually used:

[me@linuxbox ~]$ export PS4='$LINENO + '
[me@linuxbox ~]$ trouble
5 + number=1
7 + '[' 1 = 1 ']'
8 + echo 'Number is equal to 1.'
Number is equal to 1.

To perform a trace on a selected portion of a script, rather than the
entire script, we can use the set command with the -x option:

#!/bin/bash

trouble: script to demonstrate common errors

number=1

set -x # Turn on tracing
if [$number = 1]; then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi
set +x # Turn off tracing

We use the set command with the -x option to activate tracing and the
+x option to deactivate tracing. This technique can be used to examine mul-
tiple portions of a troublesome script.

372 Chapter 30

www.it-ebooks.info

http://www.it-ebooks.info/

Examining Values During Execution
It is often useful, along with tracing, to display the content of variables to
see the internal workings of a script while it is being executed. Applying
additional echo statements will usually do the trick:

#!/bin/bash

trouble: script to demonstrate common errors

number=1

echo "number=$number" # DEBUG
set -x # Turn on tracing
if [$number = 1]; then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi
set +x # Turn off tracing

In this trivial example, we simply display the value of the variable num-
ber and mark the added line with a comment to facilitate its later identifica-
tion and removal. This technique is particularly useful when watching the
behavior of loops and arithmetic within scripts.

Final Note
In this chapter, we looked at just a few of the problems that can crop up
during script development. Of course, there are many more. The tech-
niques described here will enable finding most common bugs. Debugging
is an art that can be developed through experience, both in avoiding bugs
(testing constantly throughout development) and in finding bugs (effective
use of tracing).

Troubleshooting 373
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

F L O W C O N T R O L :
B R A N C H I N G W I T H C A S E

In this chapter, we will continue to look at flow con-
trol. In Chapter 28, we constructed some simple menus
and built the logic used to act on a user’s selection. To
do this, we used a series of if commands to identify
which of the possible choices had been selected. This
type of construct appears frequently in programs, so
much so that many programming languages (includ-
ing the shell) provide a flow-control mechanism for
multiple-choice decisions.

www.it-ebooks.info

http://www.it-ebooks.info/

case
The bash multiple-choice compound command is called case. It has the fol-
lowing syntax:

case word in
[pattern [| pattern]...) commands ;;]...

esac

If we look at the read-menu program from Chapter 28, we see the logic
used to act on a user’s selection:

#!/bin/bash

read-menu: a menu driven system information program

clear
echo "
Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit
"
read -p "Enter selection [0-3] > "

if [[$REPLY =~ ^[0-3]$]]; then
if [[$REPLY == 0]]; then

echo "Program terminated."
exit

fi
if [[$REPLY == 1]]; then

echo "Hostname: $HOSTNAME"
uptime
exit

fi
if [[$REPLY == 2]]; then

df -h
exit

fi
if [[$REPLY == 3]]; then

if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
exit

fi
else

echo "Invalid entry." >&2
exit 1

fi

376 Chapter 31

www.it-ebooks.info

http://www.it-ebooks.info/

Using case, we can replace this logic with something simpler:

#!/bin/bash

case-menu: a menu driven system information program

clear
echo "
Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit
"
read -p "Enter selection [0-3] > "

case $REPLY in
0) echo "Program terminated."

exit
;;

1) echo "Hostname: $HOSTNAME"
uptime
;;

2) df -h
;;

3) if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
;;

*) echo "Invalid entry" >&2
exit 1
;;

esac

The case command looks at the value of word—in our example, the value
of the REPLY variable—and then attempts to match it against one of the speci-
fied patterns. When a match is found, the commands associated with the spe-
cified pattern are executed. After a match is found, no further matches are
attempted.

Patterns
The patterns used by case are the same as those used by pathname expan-
sion. Patterns are terminated with a) character. Table 31-1 shows some valid
patterns.

Flow Control: Branching with case 377
www.it-ebooks.info

http://www.it-ebooks.info/

Table31-1: case Pattern Examples

Pattern Description

a) Matches if word equals a.

[[:alpha:]]) Matches if word is a single alphabetic character.

???) Matches if word is exactly three characters long.

*.txt) Matches if word ends with the characters .txt.

*) Matches any value of word. It is good practice to include
this as the last pattern in a case command to catch any
values of word that did not match a previous pattern; that
is, to catch any possible invalid values.

Here is an example of patterns at work:

#!/bin/bash

read -p "enter word > "

case $REPLY in
[[:alpha:]]) echo "is a single alphabetic character." ;;
[ABC][0-9]) echo "is A, B, or C followed by a digit." ;;
???) echo "is three characters long." ;;
*.txt) echo "is a word ending in '.txt'" ;;
*) echo "is something else." ;;

esac

Combining Multiple Patterns
It is also possible to combine multiple patterns using the vertical pipe charac-
ter as a separator. This creates an “or” conditional pattern. This is useful for
such things as handling both upper- and lowercase characters. For example:

#!/bin/bash

case-menu: a menu driven system information program

clear
echo "
Please Select:

A. Display System Information
B. Display Disk Space
C. Display Home Space Utilization
Q. Quit
"
read -p "Enter selection [A, B, C or Q] > "

case $REPLY in
q|Q) echo "Program terminated."

exit
;;

378 Chapter 31

www.it-ebooks.info

http://www.it-ebooks.info/

a|A) echo "Hostname: $HOSTNAME"
uptime
;;

b|B) df -h
;;

c|C) if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
;;

*) echo "Invalid entry" >&2
exit 1
;;

esac

Here, we modify the case-menu program to use letters instead of digits for
menu selection. Notice that the new patterns allow for entry of both upper-
and lowercase letters.

Final Note
The case command is a handy addition to our bag of programming tricks.
As we will see in the next chapter, it’s the perfect tool for handling certain
types of problems.

Flow Control: Branching with case 379
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

P O S I T I O N A L P A R A M E T E R S

One feature that has been missing from our pro-
grams is the ability to accept and process command-
line options and arguments. In this chapter, we will
examine the shell features that allow our programs
to get access to the contents of the command line.

Accessing the Command Line
The shell provides a set of variables called positional parameters that contain
the individual words on the command line. The variables are named 0
through 9. They can be demonstrated this way:

#!/bin/bash

posit-param: script to view command line parameters

echo "
\$0 = $0
\$1 = $1
\$2 = $2

www.it-ebooks.info

http://www.it-ebooks.info/

\$3 = $3
\$4 = $4
\$5 = $5
\$6 = $6
\$7 = $7
\$8 = $8
\$9 = $9
"

This very simple script displays the values of the variables $0 through $9.
When executed with no command-line arguments:

[me@linuxbox ~]$ posit-param

$0 = /home/me/bin/posit-param
$1 =
$2 =
$3 =
$4 =
$5 =
$6 =
$7 =
$8 =
$9 =

Even when no arguments are provided, $0 will always contain the first
item appearing on the command line, which is the pathname of the pro-
gram being executed. When arguments are provided, we see the results:

[me@linuxbox ~]$ posit-param a b c d

$0 = /home/me/bin/posit-param
$1 = a
$2 = b
$3 = c
$4 = d
$5 =
$6 =
$7 =
$8 =
$9 =

Note: You can actually access more than nine parameters using parameter expansion. To
specify a number greater than nine, surround the number in braces; for example,
${10}, ${55}, ${211}, and so on.

Determining the Number of Arguments
The shell also provides a variable, $#, that yields the number of arguments
on the command line:

#!/bin/bash

posit-param: script to view command line parameters

382 Chapter 32

www.it-ebooks.info

http://www.it-ebooks.info/

echo "
Number of arguments: $#
\$0 = $0
\$1 = $1
\$2 = $2
\$3 = $3
\$4 = $4
\$5 = $5
\$6 = $6
\$7 = $7
\$8 = $8
\$9 = $9
"

The result:

[me@linuxbox ~]$ posit-param a b c d

Number of arguments: 4
$0 = /home/me/bin/posit-param
$1 = a
$2 = b
$3 = c
$4 = d
$5 =
$6 =
$7 =
$8 =
$9 =

shift—Getting Access to Many Arguments
But what happens when we give the program a large number of arguments
such as this:

[me@linuxbox ~]$ posit-param *

Number of arguments: 82
$0 = /home/me/bin/posit-param
$1 = addresses.ldif
$2 = bin
$3 = bookmarks.html
$4 = debian-500-i386-netinst.iso
$5 = debian-500-i386-netinst.jigdo
$6 = debian-500-i386-netinst.template
$7 = debian-cd_info.tar.gz
$8 = Desktop
$9 = dirlist-bin.txt

On this example system, the wildcard * expands into 82 arguments.
How can we process that many? The shell provides a method, albeit a
clumsy one, to do this. The shift command causes each parameter to
“move down one” each time it is executed. In fact, by using shift, it is pos-
sible to get by with only one parameter (in addition to $0, which never
changes).

Positional Parameters 383
www.it-ebooks.info

http://www.it-ebooks.info/

#!/bin/bash

posit-param2: script to display all arguments

count=1

while [[$# -gt 0]]; do
echo "Argument $count = $1"
count=$((count + 1))
shift

done

Each time shift is executed, the value of $2 is moved to $1, the value of
$3 is moved to $2, and so on. The value of $# is also reduced by 1.

In the posit-param2 program, we create a loop that evaluates the number
of arguments remaining and continues as long as there is at least one. We
display the current argument, increment the variable count with each itera-
tion of the loop to provide a running count of the number of arguments
processed, and, finally, execute a shift to load $1 with the next argument.
Here is the program at work:

[me@linuxbox ~]$ posit-param2 a b c d
Argument 1 = a
Argument 2 = b
Argument 3 = c
Argument 4 = d

Simple Applications
Even without shift, it’s possible to write useful applications using positional
parameters. By way of example, here is a simple file-information program:

#!/bin/bash

file_info: simple file information program

PROGNAME=$(basename $0)

if [[-e $1]]; then
echo -e "\nFile Type:"
file $1
echo -e "\nFile Status:"
stat $1

else
echo "$PROGNAME: usage: $PROGNAME file" >&2
exit 1

fi

This program displays the file type (determined by the file command)
and the file status (from the stat command) of a specified file. One interest-
ing feature of this program is the PROGNAME variable. It is given the value that
results from the basename $0 command. The basename command removes the

384 Chapter 32

www.it-ebooks.info

http://www.it-ebooks.info/

leading portion of a pathname, leaving only the base name of a file. In our
example, basename removes the leading portion of the pathname contained
in the $0 parameter, the full pathname of our example program. This value
is useful when constructing messages such as the usage message at the end
of the program. When it’s coded this way, the script can be renamed, and
the message automatically adjusts to contain the name of the program.

Using Positional Parameters with Shell Functions
Just as positional parameters are used to pass arguments to shell scripts, they
can also be used to pass arguments to shell functions. To demonstrate, we
will convert the file_info script into a shell function:

file_info () {

file_info: function to display file information

if [[-e $1]]; then
echo -e "\nFile Type:"
file $1
echo -e "\nFile Status:"
stat $1

else
echo "$FUNCNAME: usage: $FUNCNAME file" >&2
return 1

fi
}

Now, if a script that incorporates the file_info shell function calls the
function with a filename argument, the argument will be passed to the
function.

With this capability, we can write many useful shell functions that can
be used not only in scripts but also within the .bashrc file.

Notice that the PROGNAME variable was changed to the shell variable
FUNCNAME. The shell automatically updates this variable to keep track of the
currently executed shell function. Note that $0 always contains the full path-
name of the first item on the command line (i.e., the name of the program)
and does not contain the name of the shell function as we might expect.

Handling Positional Parameters En Masse
It is sometimes useful to manage all the positional parameters as a group. For
example, we might want to write a wrapper around another program. This
means that we create a script or shell function that simplifies the execution
of another program. The wrapper supplies a list of arcane command-line
options and then passes a list of arguments to the lower-level program.

The shell provides two special parameters for this purpose. They both
expand into the complete list of positional parameters but differ in rather
subtle ways. Table 32-1 describes these parameters.

Positional Parameters 385
www.it-ebooks.info

http://www.it-ebooks.info/

Table 32-1: The * and @ Special Parameters

Parameter Description

$* Expands into the list of positional parameters, starting with 1.
When surrounded by double quotes, it expands into a double-
quoted string containing all the positional parameters, each
separated by the first character of the IFS shell variable (by
default a space character).

$@ Expands into the list of positional parameters, starting with 1.
When surrounded by double quotes, it expands each posi-
tional parameter into a separate word surrounded by double
quotes.

Here is a script that shows these special parameters in action:

#!/bin/bash

posit-params3 : script to demonstrate $* and $@

print_params () {
echo "\$1 = $1"
echo "\$2 = $2"
echo "\$3 = $3"
echo "\$4 = $4"

}

pass_params () {
echo -e "\n" '$* :'; print_params $*
echo -e "\n" '"$*" :'; print_params "$*"
echo -e "\n" '$@ :'; print_params $@
echo -e "\n" '"$@" :'; print_params "$@"

}

pass_params "word" "words with spaces"

In this rather convoluted program, we create two arguments, word and
words with spaces, and pass them to the pass_params function. That function,
in turn, passes them on to the print_params function, using each of the four
methods available with the special parameters $* and $@. When executed,
the script reveals the differences:

[me@linuxbox ~]$ posit-param3

 $* :
$1 = word
$2 = words
$3 = with
$4 = spaces

 "$*" :
$1 = word words with spaces
$2 =

386 Chapter 32

www.it-ebooks.info

http://www.it-ebooks.info/

$3 =
$4 =

 $@ :
$1 = word
$2 = words
$3 = with
$4 = spaces

 "$@" :
$1 = word
$2 = words with spaces
$3 =
$4 =

With our arguments, both $* and $@ produce a four-word result: word,
words, with, and spaces. "$*" produces a one-word result: word words with
spaces. "$@" produces a two-word result: word and words with spaces.

This matches our actual intent. The lesson to take from this is that even
though the shell provides four different ways of getting the list of positional
parameters, "$@" is by far the most useful for most situations, because it pre-
serves the integrity of each positional parameter.

A More Complete Application
After a long hiatus, we are going to resume work on our sys_info_page pro-
gram. Our next addition will add several command-line options to the pro-
gram as follows:

Output file. We will add an option to specify a name for a file to contain
the program’s output. It will be specified as either -f file or --file file.

Interactive mode. This option will prompt the user for an output file-
name and will determine if the specified file already exists. If it does,
the user will be prompted before the existing file is overwritten. This
option will be specified by either -i or --interactive.

Help. Either -h or --help may be specified to cause the program to out-
put an informative usage message.

Here is the code needed to implement the command-line processing:

usage () {
echo "$PROGNAME: usage: $PROGNAME [-f file | -i]"
return

}

process command line options

interactive=
filename=

while [[-n $1]]; do
case $1 in

Positional Parameters 387
www.it-ebooks.info

http://www.it-ebooks.info/

-f | --file) shift
filename=$1
;;

-i | --interactive) interactive=1
;;

-h | --help) usage
exit
;;

*) usage >&2
exit 1
;;

esac
shift

done

First, we add a shell function called usage to display a message when the
help option is invoked or an unknown option is attempted.

Next, we begin the processing loop. This loop continues while the posi-
tional parameter $1 is not empty. At the bottom of the loop, we have a shift
command to advance the positional parameters to ensure that the loop will
eventually terminate.

Within the loop, we have a case statement that examines the current
positional parameter to see if it matches any of the supported choices. If a
supported parameter is found, it is acted upon. If not, the usage message
is displayed, and the script terminates with an error.

The -f parameter is handled in an interesting way. When detected, it
causes an additional shift to occur, which advances the positional param-
eter $1 to the filename argument supplied to the -f option.

We next add the code to implement the interactive mode:

interactive mode

if [[-n $interactive]]; then
while true; do

read -p "Enter name of output file: " filename
if [[-e $filename]]; then

read -p "'$filename' exists. Overwrite? [y/n/q] > "
case $REPLY in

Y|y) break
;;

Q|q) echo "Program terminated."
exit
;;

*) continue
;;

esac
elif [[-z $filename]]; then

continue
else

break
fi

done
fi

388 Chapter 32

www.it-ebooks.info

http://www.it-ebooks.info/

If the interactive variable is not empty, an endless loop is started, which
contains the filename prompt and subsequent existing file-handling code.
If the desired output file already exists, the user is prompted to overwrite,
choose another filename, or quit the program. If the user chooses to over-
write an existing file, a break is executed to terminate the loop. Notice that
the case statement detects only if the user chooses to overwrite or quit. Any
other choice causes the loop to continue and prompts the user again.

In order to implement the output filename feature, we must first con-
vert the existing page-writing code into a shell function, for reasons that will
become clear in a moment:

write_html_page () {
cat <<- _EOF_
<HTML>

<HEAD>
<TITLE>$TITLE</TITLE>

</HEAD>
<BODY>

<H1>$TITLE</H1>
<P>$TIME_STAMP</P>
$(report_uptime)
$(report_disk_space)
$(report_home_space)

</BODY>
</HTML>
EOF
return

}

output html page

if [[-n $filename]]; then
if touch $filename && [[-f $filename]]; then

write_html_page > $filename
else

echo "$PROGNAME: Cannot write file '$filename'" >&2
exit 1

fi
else

write_html_page
fi

The code that handles the logic of the -f option appears at the end of
the listing shown above. In it, we test for the existence of a filename, and, if
one is found, a test is performed to see if the file is indeed writable. To do
this, a touch is performed, followed by a test to determine if the resulting file
is a regular file. These two tests take care of situations where an invalid path-
name is input (touch will fail), and, if the file already exists, that it’s a regu-
lar file.

As we can see, the write_html_page function is called to perform the
actual generation of the page. Its output is either directed to standard out-
put (if the variable filename is empty) or redirected to the specified file.

Positional Parameters 389
www.it-ebooks.info

http://www.it-ebooks.info/

Final Note
With the addition of positional parameters, we can now write fairly functional
scripts. For simple, repetitive tasks, positional parameters make it possible to
write very useful shell functions that can be placed in a user’s .bashrc file.

Our sys_info_page program has grown in complexity and sophistication.
Here is a complete listing, with the most recent changes highlighted:

#!/bin/bash

sys_info_page: program to output a system information page

PROGNAME=$(basename $0)
TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME=$(date +"%x %r %Z")
TIME_STAMP="Generated $CURRENT_TIME, by $USER"

report_uptime () {
cat <<- _EOF_

<H2>System Uptime</H2>
<PRE>$(uptime)</PRE>
EOF

return
}

report_disk_space () {
cat <<- _EOF_

<H2>Disk Space Utilization</H2>
<PRE>$(df -h)</PRE>
EOF

return
}

report_home_space () {
if [[$(id -u) -eq 0]]; then

cat <<- _EOF_
<H2>Home Space Utilization (All Users)</H2>
<PRE>$(du -sh /home/*)</PRE>
EOF

else
cat <<- _EOF_

<H2>Home Space Utilization ($USER)</H2>
<PRE>$(du -sh $HOME)</PRE>
EOF

fi
return

}

usage () {
echo "$PROGNAME: usage: $PROGNAME [-f file | -i]"
return

}

write_html_page () {
cat <<- _EOF_
<HTML>

<HEAD>

390 Chapter 32

www.it-ebooks.info

http://www.it-ebooks.info/

<TITLE>$TITLE</TITLE>
</HEAD>
<BODY>

<H1>$TITLE</H1>
<P>$TIME_STAMP</P>
$(report_uptime)
$(report_disk_space)
$(report_home_space)

</BODY>
</HTML>
EOF
return

}

process command line options

interactive=
filename=

while [[-n $1]]; do
case $1 in

-f | --file) shift
filename=$1
;;

-i | --interactive) interactive=1
;;

-h | --help) usage
exit
;;

*) usage >&2
exit 1
;;

esac
shift

done

interactive mode

if [[-n $interactive]]; then
while true; do

read -p "Enter name of output file: " filename
if [[-e $filename]]; then

read -p "'$filename' exists. Overwrite? [y/n/q] > "
case $REPLY in

Y|y) break
;;

Q|q) echo "Program terminated."
exit
;;

*) continue
;;

esac
fi

done
fi

output html page

Positional Parameters 391
www.it-ebooks.info

http://www.it-ebooks.info/

if [[-n $filename]]; then
if touch $filename && [[-f $filename]]; then

write_html_page > $filename
else

echo "$PROGNAME: Cannot write file '$filename'" >&2
exit 1

fi
else

write_html_page
fi

Our script is pretty good now, but we’re not quite done. In the next
chapter, we will add one last improvement to our script.

392 Chapter 32

www.it-ebooks.info

http://www.it-ebooks.info/

FLOW CONTROL:
LOOPING WITH FOR

In this final chapter on flow control, we will look at
another of the shell’s looping constructs. The for loop
differs from the while and until loops in that it provides
a means of processing sequences during a loop. This
turns out to be very useful when programming. Accord-
ingly, the for loop is a very popular construct in bash
scripting.

A for loop is implemented, naturally enough, with the for command. In
modern versions of bash, for is available in two forms.

for: Traditional Shell Form
The original for command’s syntax is as follows:

for variable [in words]; do
commands

done

www.it-ebooks.info

http://www.it-ebooks.info/

where variable is the name of a variable that will increment during the exe-
cution of the loop, words is an optional list of items that will be sequentially
assigned to variable, and commands are the commands that are to be executed
on each iteration of the loop.

The for command is useful on the command line. We can easily demon-
strate how it works:

[me@linuxbox ~]$ for i in A B C D; do echo $i; done
A
B
C
D

In this example, for is given a list of four words: A, B, C, and D. With a
list of four words, the loop is executed four times. Each time the loop is
executed, a word is assigned to the variable i. Inside the loop, we have an
echo command that displays the value of i to show the assignment. As with
the while and until loops, the done keyword closes the loop.

The really powerful feature of for is the number of interesting ways we
can create the list of words. For example, we can use brace expansion:

[me@linuxbox ~]$ for i in {A..D}; do echo $i; done
A
B
C
D

or pathname expansion:

[me@linuxbox ~]$ for i in distros*.txt; do echo $i; done
distros-by-date.txt
distros-dates.txt
distros-key-names.txt
distros-key-vernums.txt
distros-names.txt
distros.txt
distros-vernums.txt
distros-versions.txt

or command substitution:

#!/bin/bash

longest-word : find longest string in a file

while [[-n $1]]; do
if [[-r $1]]; then

max_word=
max_len=0
for i in $(strings $1); do

len=$(echo $i | wc -c)
if ((len > max_len)); then

max_len=$len
max_word=$i

fi

394 Chapter 33

www.it-ebooks.info

http://www.it-ebooks.info/

done
echo "$1: '$max_word' ($max_len characters)"

fi
shift

done

In this example, we look for the longest string found within a file. When
given one or more filenames on the command line, this program uses the
strings program (which is included in the GNU binutils package) to gener-
ate a list of readable text “words” in each file. The for loop processes each
word in turn and determines if the current word is the longest found so far.
When the loop concludes, the longest word is displayed.

If the optional in words portion of the for command is omitted, for
defaults to processing the positional parameters. We will modify our
longest-word script to use this method:

#!/bin/bash

longest-word2 : find longest string in a file

for i; do
if [[-r $i]]; then

max_word=
max_len=0
for j in $(strings $i); do

len=$(echo $j | wc -c)
if ((len > max_len)); then

max_len=$len
max_word=$j

fi
done
echo "$i: '$max_word' ($max_len characters)"

fi
done

As we can see, we have changed the outermost loop to use for in place
of while. Because we omitted the list of words in the for command, the posi-
tional parameters are used instead. Inside the loop, previous instances of
the variable i have been changed to the variable j. The use of shift has also
been eliminated.

W H Y I ?

You may have noticed that the variable i was chosen for each of the for loop
examples above. Why? No specific reason actually, besides tradition. The vari-
able used with for can be any valid variable, but i is the most common, followed
by j and k.

The basis of this tradition comes from the Fortran programming language.
In Fortran, undeclared variables starting with the letters I, J, K, L, and M are auto-
matically typed as integers, while variables beginning with any other letter are
typed as real (numbers with decimal fractions). This behavior led programmers

Flow Control: Looping with for 395
www.it-ebooks.info

http://www.it-ebooks.info/

to use the variables I, J, and K for loop variables, since it was less work to use
them when a temporary variable (as a loop variable often was) was needed.

It also led to the following Fortran-based witticism: “GOD is real, unless
declared integer.”

for: C Language Form
Recent versions of bash have added a second form of for-command syntax,
one that resembles the form found in the C programming language. Many
other languages support this form, as well.

for ((expression1; expression2; expression3)); do
commands

done

where expression1, expression2, and expression3 are arithmetic expressions
and commands are the commands to be performed during each iteration of
the loop.

In terms of behavior, this form is equivalent to the following construct:

((expression1))
while ((expression2)); do

commands
((expression3))

done

expression1 is used to initialize conditions for the loop, expression2 is used
to determine when the loop is finished, and expression3 is carried out at the
end of each iteration of the loop.

Here is a typical application:

#!/bin/bash

simple_counter : demo of C style for command

for ((i=0; i<5; i=i+1)); do
echo $i

done

When executed, it produces the following output:

[me@linuxbox ~]$ simple_counter
0
1
2
3
4

In this example, expression1 initializes the variable i with the value of 0,
expression2 allows the loop to continue as long as the value of i remains less
than 5, and expression3 increments the value of i by 1 each time the loop
repeats.

396 Chapter 33

www.it-ebooks.info

http://www.it-ebooks.info/

The C-language form of for is useful anytime a numeric sequence is
needed. We will see several applications of this in the next two chapters.

Final Note
With our knowledge of the for command, we will now apply the final
improvements to our sys_info_page script. Currently, the report_home_space
function looks like this:

report_home_space () {
if [[$(id -u) -eq 0]]; then

cat <<- _EOF_
<H2>Home Space Utilization (All Users)</H2>
<PRE>$(du -sh /home/*)</PRE>
EOF

else
cat <<- _EOF_

<H2>Home Space Utilization ($USER)</H2>
<PRE>$(du -sh $HOME)</PRE>
EOF

fi
return

}

Next, we will rewrite it to provide more detail for each user’s home
directory and include the total number of files and subdirectories in each:

report_home_space () {

local format="%8s%10s%10s\n"
local i dir_list total_files total_dirs total_size user_name

if [[$(id -u) -eq 0]]; then
dir_list=/home/*
user_name="All Users"

else
dir_list=$HOME
user_name=$USER

fi

echo "<H2>Home Space Utilization ($user_name)</H2>"

for i in $dir_list; do

total_files=$(find $i -type f | wc -l)
total_dirs=$(find $i -type d | wc -l)
total_size=$(du -sh $i | cut -f 1)
echo "<H3>$i</H3>"
echo "<PRE>"
printf "$format" "Dirs" "Files" "Size"
printf "$format" "----" "-----" "----"
printf "$format" $total_dirs $total_files $total_size
echo "</PRE>"

done
return

}

Flow Control: Looping with for 397
www.it-ebooks.info

http://www.it-ebooks.info/

This rewrite applies much of what we have learned so far. We still test
for the superuser, but instead of performing the complete set of actions as
part of the if, we set some variables used later in a for loop. We have added
several local variables to the function and made use of printf to format some
of the output.

398 Chapter 33

www.it-ebooks.info

http://www.it-ebooks.info/

S T R I N G S A ND N U M B E R S

Computer programs are all about working with data.
In past chapters, we have focused on processing data
at the file level. However, many programming prob-
lems need to be solved using smaller units of data
such as strings and numbers.

In this chapter, we will look at several shell features that are used to
manipulate strings and numbers. The shell provides a variety of parameter
expansions that perform string operations. In addition to arithmetic expan-
sion (which we touched upon in Chapter 7), there is a common command-
line program called bc, which performs higher-level math.

Parameter Expansion
Though parameter expansion came up in Chapter 7, we did not cover it in
detail because most parameter expansions are used in scripts rather than on
the command line. We have already worked with some forms of parameter
expansion; for example, shell variables. The shell provides many more.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Parameters
The simplest form of parameter expansion is reflected in the ordinary use
of variables. For example, $a, when expanded, becomes whatever the vari-
able a contains. Simple parameters may also be surrounded by braces, such
as ${a}. This has no effect on the expansion, but it is required if the variable
is adjacent to other text, which may confuse the shell. In this example, we
attempt to create a filename by appending the string _file to the contents
of the variable a.

[me@linuxbox ~]$ a="foo"
[me@linuxbox ~]$ echo "$a_file"

If we perform this sequence, the result will be nothing, because the
shell will try to expand a variable named a_file rather than a. This problem
can be solved by adding braces:

[me@linuxbox ~]$ echo "${a}_file"
foo_file

We have also seen that positional parameters greater than 9 can be
accessed by surrounding the number in braces. For example, to access the
11th positional parameter, we can do this: ${11}.

Expansions to Manage Empty Variables
Several parameter expansions deal with nonexistent and empty variables.
These expansions are handy for handling missing positional parameters
and assigning default values to parameters. Here is one such expansion:

${parameter:-word}

If parameter is unset (i.e., does not exist) or is empty, this expansion
results in the value of word. If parameter is not empty, the expansion results
in the value of parameter.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:-"substitute value if unset"}
substitute value if unset
[me@linuxbox ~]$ echo $foo

[me@linuxbox ~]$ foo=bar
[me@linuxbox ~]$ echo ${foo:-"substitute value if unset"}
bar
[me@linuxbox ~]$ echo $foo
bar

Here is another expansion, in which we use the equal sign instead of
a dash:

${parameter:=word}

400 Chapter 34

www.it-ebooks.info

http://www.it-ebooks.info/

If parameter is unset or empty, this expansion results in the value of word.
In addition, the value of word is assigned to parameter. If parameter is not empty,
the expansion results in the value of parameter.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:="default value if unset"}
default value if unset
[me@linuxbox ~]$ echo $foo
default value if unset
[me@linuxbox ~]$ foo=bar
[me@linuxbox ~]$ echo ${foo:="default value if unset"}
bar
[me@linuxbox ~]$ echo $foo
bar

Note: Positional and other special parameters cannot be assigned this way.

Here we use a question mark:

${parameter:?word}

If parameter is unset or empty, this expansion causes the script to exit
with an error, and the contents of word are sent to standard error. If parameter
is not empty, the expansion results in the value of parameter.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:?"parameter is empty"}
bash: foo: parameter is empty
[me@linuxbox ~]$ echo $?
1
[me@linuxbox ~]$ foo=bar
[me@linuxbox ~]$ echo ${foo:?"parameter is empty"}
bar
[me@linuxbox ~]$ echo $?
0

Here we use a plus sign:

${parameter:+word}

If parameter is unset or empty, the expansion results in nothing. If
parameter is not empty, the value of word is substituted for parameter; however,
the value of parameter is not changed.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:+"substitute value if set"}

[me@linuxbox ~]$ foo=bar
[me@linuxbox ~]$ echo ${foo:+"substitute value if set"}
substitute value if set

Expansions That Return Variable Names
The shell has the ability to return the names of variables. This feature is
used in some rather exotic situations.

Strings and Numbers 401
www.it-ebooks.info

http://www.it-ebooks.info/

${!prefix*}
${!prefix@}

This expansion returns the names of existing variables with names
beginning with prefix. According to the bash documentation, both forms
of the expansion perform identically. Here, we list all the variables in the
environment with names that begin with BASH:

[me@linuxbox ~]$ echo ${!BASH*}
BASH BASH_ARGC BASH_ARGV BASH_COMMAND BASH_COMPLETION BASH_COMPLETION_DIR
BASH_LINENO BASH_SOURCE BASH_SUBSHELL BASH_VERSINFO BASH_VERSION

String Operations
There is a large set of expansions that can be used to operate on strings. Many
of these expansions are particularly well suited for operations on pathnames.
The expansion

${#parameter}

expands into the length of the string contained by parameter. Normally,
parameter is a string; however, if parameter is either @ or *, then the expansion
results in the number of positional parameters.

[me@linuxbox ~]$ foo="This string is long."
[me@linuxbox ~]$ echo "'$foo' is ${#foo} characters long."
'This string is long.' is 20 characters long.

${parameter:offset}
${parameter:offset:length}

This expansion is used to extract a portion of the string contained in
parameter. The extraction begins at offset characters from the beginning of the
string and continues until the end of the string, unless the length is specified.

[me@linuxbox ~]$ foo="This string is long."
[me@linuxbox ~]$ echo ${foo:5}
string is long.
[me@linuxbox ~]$ echo ${foo:5:6}
string

If the value of offset is negative, it is taken to mean it starts from the
end of the string rather than the beginning. Note that negative values must
be preceded by a space to prevent confusion with the ${parameter:-word}
expansion. length, if present, must not be less than 0.

If parameter is @, the result of the expansion is length positional paramet-
ers, starting at offset.

[me@linuxbox ~]$ foo="This string is long."
[me@linuxbox ~]$ echo ${foo: -5}
long.
[me@linuxbox ~]$ echo ${foo: -5:2}
lo

402 Chapter 34

www.it-ebooks.info

http://www.it-ebooks.info/

${parameter#pattern}
${parameter##pattern}

These expansions remove a leading portion of the string contained in
parameter defined by pattern. pattern is a wildcard pattern like those used in
pathname expansion. The difference in the two forms is that the # form
removes the shortest match, while the ## form removes the longest match.

[me@linuxbox ~]$ foo=file.txt.zip
[me@linuxbox ~]$ echo ${foo#*.}
txt.zip
[me@linuxbox ~]$ echo ${foo##*.}
zip

${parameter%pattern}
${parameter%%pattern}

These expansions are the same as the # and ## expansions above, except
they remove text from the end of the string contained in parameter rather
than from the beginning.

[me@linuxbox ~]$ foo=file.txt.zip
[me@linuxbox ~]$ echo ${foo%.*}
file.txt
[me@linuxbox ~]$ echo ${foo%%.*}
file

${parameter/pattern/string}
${parameter//pattern/string}
${parameter/#pattern/string}
${parameter/%pattern/string}

This expansion performs a search and replace upon the contents of
parameter. If text is found matching wildcard pattern, it is replaced with the
contents of string. In the normal form, only the first occurrence of pattern is
replaced. In the // form, all occurrences are replaced. The /# form requires
that the match occur at the beginning of the string, and the /% form requires
the match to occur at the end of the string. /string may be omitted, which
causes the text matched by pattern to be deleted.

[me@linuxbox ~]$ foo=JPG.JPG
[me@linuxbox ~]$ echo ${foo/JPG/jpg}
jpg.JPG
[me@linuxbox ~]$ echo ${foo//JPG/jpg}
jpg.jpg
[me@linuxbox ~]$ echo ${foo/#JPG/jpg}
jpg.JPG
[me@linuxbox ~]$ echo ${foo/%JPG/jpg}
JPG.jpg

Parameter expansion is a good thing to know. The string-manipulation
expansions can be used as substitutes for other common commands such as
sed and cut. Expansions improve the efficiency of scripts by eliminating the
use of external programs. As an example, we will modify the longest-word
program discussed in the previous chapter to use the parameter expansion

Strings and Numbers 403
www.it-ebooks.info

http://www.it-ebooks.info/

${#j} in place of the command substitution $(echo $j | wc -c) and its result-
ing subshell, like so:

#!/bin/bash

longest-word3 : find longest string in a file

for i; do
if [[-r $i]]; then

max_word=
max_len=
for j in $(strings $i); do

len=${#j}
if ((len > max_len)); then

max_len=$len
max_word=$j

fi
done
echo "$i: '$max_word' ($max_len characters)"

fi
shift

done

Next, we will compare the efficiency of the two versions by using the
time command:

[me@linuxbox ~]$ time longest-word2 dirlist-usr-bin.txt
dirlist-usr-bin.txt: 'scrollkeeper-get-extended-content-list' (38 characters)

real 0m3.618s
user 0m1.544s
sys 0m1.768s
[me@linuxbox ~]$ time longest-word3 dirlist-usr-bin.txt
dirlist-usr-bin.txt: 'scrollkeeper-get-extended-content-list' (38 characters)

real 0m0.060s
user 0m0.056s
sys 0m0.008s

The original version of the script takes 3.618 seconds to scan the
text file, while the new version, using parameter expansion, takes only
0.06 seconds—a very significant improvement.

Arithmetic Evaluation and Expansion
We looked at arithmetic expansion in Chapter 7. It is used to perform vari-
ous arithmetic operations on integers. Its basic form is

$((expression))

where expression is a valid arithmetic expression.
This is related to the compound command (()) used for arithmetic

evaluation (truth tests) we encountered in Chapter 27.
In previous chapters, we saw some of the common types of expressions

and operators. Here, we will look at a more complete list.

404 Chapter 34

www.it-ebooks.info

http://www.it-ebooks.info/

Number Bases
Back in Chapter 9, we got a look at octal (base 8) and hexadecimal (base 16)
numbers. In arithmetic expressions, the shell supports integer constants in
any base. Table 34-1 shows the notations used to specify the bases.

Table 34-1: Specifying Different Number Bases

Notation Description

Number By default, numbers without any notation are treated as
decimal (base 10) integers.

0number In arithmetic expressions, numbers with a leading zero are
considered octal.

0xnumber Hexadecimal notation

base#number number is in base.

Some examples:

[me@linuxbox ~]$ echo $((0xff))
255
[me@linuxbox ~]$ echo $((2#11111111))
255

In these examples, we print the value of the hexadecimal number ff
(the largest two-digit number) and the largest eight-digit binary (base 2)
number.

Unary Operators
There are two unary operators, the + and the -, which are used to indicate if
a number is positive or negative, respectively.

Simple Arithmetic
The ordinary arithmetic operators are listed in Table 34-2.

Table 34-2: Arithmetic Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Integer division

** Exponentiation

% Modulo (remainder)

Strings and Numbers 405
www.it-ebooks.info

http://www.it-ebooks.info/

Most of these are self-explanatory, but integer division and modulo
require further discussion.

Since the shell’s arithmetic operates on only integers, the results of divi-
sion are always whole numbers:

[me@linuxbox ~]$ echo $((5 / 2))
2

This makes the determination of a remainder in a division operation
more important:

[me@linuxbox ~]$ echo $((5 % 2))
1

By using the division and modulo operators, we can determine that 5
divided by 2 results in 2, with a remainder of 1.

Calculating the remainder is useful in loops. It allows an operation to be
performed at specified intervals during the loop’s execution. In the example
below, we display a line of numbers, highlighting each multiple of 5:

#!/bin/bash

modulo : demonstrate the modulo operator

for ((i = 0; i <= 20; i = i + 1)); do
remainder=$((i % 5))
if ((remainder == 0)); then

printf "<%d> " $i
else

printf "%d " $i
fi

done
printf "\n"

When executed, the results look like this:

[me@linuxbox ~]$ modulo
<0> 1 2 3 4 <5> 6 7 8 9 <10> 11 12 13 14 <15> 16 17 18 19 <20>

Assignment
Although its uses may not be immediately apparent, arithmetic expressions
may perform assignment. We have performed assignment many times,
though in a different context. Each time we give a variable a value, we are
performing assignment. We can also do it within arithmetic expressions:

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo $foo

[me@linuxbox ~]$ if ((foo = 5));then echo "It is true."; fi
It is true.
[me@linuxbox ~]$ echo $foo
5

406 Chapter 34

www.it-ebooks.info

http://www.it-ebooks.info/

In the example above, we first assign an empty value to the variable foo
and verify that it is indeed empty. Next, we perform an if with the com-
pound command ((foo = 5)). This process does two interesting things:
(1) it assigns the value of 5 to the variable foo, and (2) it evaluates to true
because the assignment was successful.

Note: It is important to remember the exact meaning of the = in the expression above. A single
= performs assignment: foo = 5 says, “Make foo equal to 5.” A double == evaluates
equivalence: foo == 5 says, “Does foo equal 5?” This can be very confusing because
the test command accepts a single = for string equivalence. This is yet another reason
to use the more modern [[]] and (()) compound commands in place of test.

In addition to =, the shell provides notations that perform some very
useful assignments, as shown in Table 34-3.

Table 34-3: Assignment Operators

Notation Description

parameter = value Simple assignment. Assigns value to parameter.

parameter += value Addition. Equivalent to parameter = parameter +
value.

parameter -= value Subtraction. Equivalent to parameter = parameter –
value.

parameter *= value Multiplication. Equivalent to parameter = parameter ×
value.

parameter /= value Integer division. Equivalent to parameter = parameter ÷
value.

parameter %= value Modulo. Equivalent to parameter = parameter % value.

parameter++ Variable post-increment. Equivalent to parameter =
parameter + 1. (However, see the following
discussion.)

parameter-- Variable post-decrement. Equivalent to parameter =
parameter - 1.

++parameter Variable pre-increment. Equivalent to parameter =
parameter + 1.

--parameter Variable pre-decrement. Equivalent to parameter =
parameter - 1.

These assignment operators provide a convenient shorthand for many
common arithmetic tasks. Of special interest are the increment (++) and
decrement (--) operators, which increase or decrease the value of their
parameters by 1. This style of notation is taken from the C programming

Strings and Numbers 407
www.it-ebooks.info

http://www.it-ebooks.info/

language and has been incorporated by several other programming lan-
guages, including bash.

The operators may appear either at the front of a parameter or at the
end. While they both either increment or decrement the parameter by 1, the
two placements have a subtle difference. If placed at the front of the param-
eter, the parameter is incremented (or decremented) before the parameter
is returned. If placed after, the operation is performed after the parameter is
returned. This is rather strange, but it is the intended behavior. Here is a
demonstration:

[me@linuxbox ~]$ foo=1
[me@linuxbox ~]$ echo $((foo++))
1
[me@linuxbox ~]$ echo $foo
2

If we assign the value of 1 to the variable foo and then increment it with
the ++ operator placed after the parameter name, foo is returned with the
value of 1. However, if we look at the value of the variable a second time, we
see the incremented value. If we place the ++ operator in front of the param-
eter, we get this more expected behavior:

[me@linuxbox ~]$ foo=1
[me@linuxbox ~]$ echo $((++foo))
2
[me@linuxbox ~]$ echo $foo
2

For most shell applications, prefixing the operator will be the most
useful.

The ++ and -- operators are often used in conjunction with loops. We
will make some improvements to our modulo script to tighten it up a bit:

#!/bin/bash

modulo2 : demonstrate the modulo operator

for ((i = 0; i <= 20; ++i)); do
if (((i % 5) == 0)); then

printf "<%d> " $i
else

printf "%d " $i
fi

done
printf "\n"

Bit Operations
One class of operators manipulates numbers in an unusual way. These oper-
ators work at the bit level. They are used for certain kinds of low-level tasks,
often involving setting or reading bit flags. Table 34-4 lists the bit operators.

408 Chapter 34

www.it-ebooks.info

http://www.it-ebooks.info/

Table 34-4: Bit Operators

Operator Description

~ Bitwise negation. Negate all the bits in a number.

<< Left bitwise shift. Shift all the bits in a number to the left.

>> Right bitwise shift. Shift all the bits in a number to the right.

& Bitwise AND. Perform an AND operation on all the bits in two
numbers.

| Bitwise OR. Perform an OR operation on all the bits in two numbers.

^ Bitwise XOR. Perform an exclusive OR operation on all the bits in
two numbers.

Note that there are also corresponding assignment operators (for
example, <<=) for all but bitwise negation.

Here we will demonstrate producing a list of powers of 2, using the left
bitwise shift operator:

[me@linuxbox ~]$ for ((i=0;i<8;++i)); do echo $((1<<i)); done
1
2
4
8
16
32
64
128

Logic
As we discovered in Chapter 27, the (()) compound command supports a
variety of comparison operators. There are a few more that can be used to
evaluate logic. Table 34-5 shows the complete list.

Table 34-5: Comparison Operators

Operator Description

<= Less than or equal to

>= Greater than or equal to

< Less than

> Greater than

== Equal to

Strings and Numbers 409

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Table 34-5 (continued)

Operator Description

!= Not equal to

&& Logical AND

|| Logical OR

expr1?expr2:expr3 Comparison (ternary) operator. If expression expr1
evaluates to be non-zero (arithmetic true) then expr2,
else expr3.

When used for logical operations, expressions follow the rules of arith-
metic logic; that is, expressions that evaluate as 0 are considered false, while
non-zero expressions are considered true. The (()) compound command
maps the results into the shell’s normal exit codes:

[me@linuxbox ~]$ if ((1)); then echo "true"; else echo "false"; fi
true
[me@linuxbox ~]$ if ((0)); then echo "true"; else echo "false"; fi
false

The strangest of the logical operators is the ternary operator. This oper-
ator (which is modeled after the one in the C programming language)
performs a standalone logical test. It can be used as a kind of if/then/else
statement. It acts on three arithmetic expressions (strings won’t work), and
if the first expression is true (or non-zero), the second expression is per-
formed. Otherwise, the third expression is performed. We can try this on
the command line.

[me@linuxbox ~]$ a=0
[me@linuxbox ~]$ ((a<1?++a:--a))
[me@linuxbox ~]$ echo $a
1
[me@linuxbox ~]$ ((a<1?++a:--a))

[me@linuxbox ~]$ echo $a
0

Here we see a ternary operator in action. This example implements a
toggle. Each time the operator is performed, the value of the variable a
switches from 0 to 1 or vice versa.

Please note that performing assignment within the expressions is not
straightforward. When this is attempted, bash will declare an error:

[me@linuxbox ~]$ a=0
[me@linuxbox ~]$ ((a<1?a+=1:a-=1))
bash: ((: a<1?a+=1:a-=1: attempted assignment to non-variable (error token is
"-=1")

410 Chapter 34

www.it-ebooks.info

http://www.it-ebooks.info/

This problem can be mitigated by surrounding the assignment expres-
sion with parentheses:

[me@linuxbox ~]$ ((a<1?(a+=1):(a-=1)))

Next, we see a more comprehensive example of using arithmetic opera-
tors in a script that produces a simple table of numbers:

#!/bin/bash

arith-loop: script to demonstrate arithmetic operators

finished=0
a=0
printf "a\ta**2\ta**3\n"
printf "=\t====\t====\n"

until ((finished)); do
b=$((a**2))
c=$((a**3))
printf "%d\t%d\t%d\n" $a $b $c
((a<10?++a:(finished=1)))

done

In this script, we implement an until loop based on the value of the
finished variable. Initially, the variable is set to 0 (arithmetic false), and we
continue the loop until it becomes non-zero. Within the loop, we calculate
the square and cube of the counter variable a. At the end of the loop, the
value of the counter variable is evaluated. If it is less than 10 (the maximum
number of iterations), it is incremented by 1, else the variable finished is
given the value of 1, making finished arithmetically true and thereby ter-
minating the loop. Running the script gives this result:

[me@linuxbox ~]$ arith-loop
a a**2 a**3
= ==== ====
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

bc—An Arbitrary-Precision Calculator Language
We have seen that the shell can handle all types of integer arithmetic, but
what if we need to perform higher math or even just use floating-point num-
bers? The answer is, we can’t. At least not directly with the shell. To do this,

Strings and Numbers 411
www.it-ebooks.info

http://www.it-ebooks.info/

we need to use an external program. There are several approaches we can
take. Embedding Perl or AWK programs is one possible solution but, unfor-
tunately, outside the scope of this book.

Another approach is to use a specialized calculator program. One such
program found on most Linux systems is called bc.

The bc program reads a file written in its own C-like language and exe-
cutes it. A bc script may be a separate file, or it may be read from standard
input. The bc language supports quite a few features, including variables,
loops, and programmer-defined functions. We won’t cover bc entirely here,
just enough to get a taste. bc is well documented by its man page.

Let’s start with a simple example. We’ll write a bc script to add 2 plus 2:

/* A very simple bc script */

2 + 2

The first line of the script is a comment. bc uses the same syntax for
comments as the C programming language. Comments, which may span
multiple lines, begin with /* and end with */.

Using bc
If we save the bc script above as foo.bc, we can run it this way:

[me@linuxbox ~]$ bc foo.bc
bc 1.06.94

Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software Foundation,
Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'.
4

If we look carefully, we can see the result at the very bottom, after the
copyright message. This message can be suppressed with the -q (quiet)
option.

bc can also be used interactively:

[me@linuxbox ~]$ bc -q
2 + 2
4
quit

When using bc interactively, we simply type the calculations we wish to
perform, and the results are immediately displayed. The bc command quit
ends the interactive session.

It is also possible to pass a script to bc via standard input:

[me@linuxbox ~]$ bc < foo.bc
4

412 Chapter 34

www.it-ebooks.info

http://www.it-ebooks.info/

The ability to take standard input means that we can use here docu-
ments, here strings, and pipes to pass scripts. This is a here string example:

[me@linuxbox ~]$ bc <<< "2+2"
4

An Example Script
As a real-world example, we will construct a script that performs a common
calculation, monthly loan payments. In the script below, we use a here docu-
ment to pass a script to bc:

#!/bin/bash

loan-calc : script to calculate monthly loan payments

PROGNAME=$(basename $0)

usage () {
cat <<- EOF
Usage: $PROGNAME PRINCIPAL INTEREST MONTHS

Where:

PRINCIPAL is the amount of the loan.
INTEREST is the APR as a number (7% = 0.07).
MONTHS is the length of the loan's term.

EOF
}

if (($# != 3)); then
usage
exit 1

fi

principal=$1
interest=$2
months=$3

bc <<- EOF
scale = 10
i = $interest / 12
p = $principal
n = $months
a = p * ((i * ((1 + i) ^ n)) / (((1 + i) ^ n) - 1))
print a, "\n"

EOF

When executed, the results look like this:

[me@linuxbox ~]$ loan-calc 135000 0.0775 180
1270.7222490000

This example calculates the monthly payment for a $135,000 loan at
7.75% APR for 180 months (15 years). Notice the precision of the answer.
This is determined by the value given to the special scale variable in the bc

Strings and Numbers 413
www.it-ebooks.info

http://www.it-ebooks.info/

script. A full description of the bc scripting language is provided by the bc
man page. While its mathematical notation is slightly different from that
of the shell (bc more closely resembles C), most of it will be quite familiar,
based on what we have learned so far.

Final Note
In this chapter, we have learned about many of the little things that can be
used to get the “real work” done in scripts. As our experience with scripting
grows, the ability to effectively manipulate strings and numbers will prove
extremely valuable. Our loan-calc script demonstrates that even simple
scripts can do some really useful things.

Extra Credit
While the basic functionality of the loan-calc script is in place, the script is
far from complete. For extra credit, try improving the loan-calc script with
the following features:

Full verification of the command-line arguments

A command-line option to implement an “interactive” mode that
will prompt the user to input the principal, interest rate, and term
of the loan

A better format for the output

414 Chapter 34

www.it-ebooks.info

http://www.it-ebooks.info/

A R R A Y S

In the last chapter, we looked at how the shell can
manipulate strings and numbers. The data types we
have looked at so far are known in computer science
circles as scalar variables, that is, variables that contain
a single value.

In this chapter, we will look at another kind of data structure called an
array, which holds multiple values. Arrays are a feature of virtually every pro-
gramming language. The shell supports them, too, though in a rather lim-
ited fashion. Even so, they can be very useful for solving programming
problems.

What Are Arrays?
Arrays are variables that hold more than one value at a time. Arrays are
organized like a table. Let’s consider a spreadsheet as an example. A spread-
sheet acts like a two-dimensional array. It has both rows and columns, and an
individual cell in the spreadsheet can be located according to its row and
column address. An array behaves the same way. An array has cells, which

www.it-ebooks.info

http://www.it-ebooks.info/

are called elements, and each element contains data. An individual array ele-
ment is accessed using an address called an index or subscript.

Most programming languages support multidimensional arrays. A spread-
sheet is an example of a multidimensional array with two dimensions, width
and height. Many languages support arrays with an arbitrary number of
dimensions, though two- and three-dimensional arrays are probably the
most commonly used.

Arrays in bash are limited to a single dimension. We can think of them
as a spreadsheet with a single column. Even with this limitation, there are
many applications for them. Array support first appeared in bash version 2.
The original Unix shell program, sh, did not support arrays at all.

Creating an Array
Array variables are named just like other bash variables and are created auto-
matically when they are accessed. Here is an example:

[me@linuxbox ~]$ a[1]=foo
[me@linuxbox ~]$ echo ${a[1]}
foo

Here we see an example of both the assignment and access of an array
element. With the first command, element 1 of array a is assigned the value
foo. The second command displays the stored value of element 1. The use of
braces in the second command is required to prevent the shell from
attempting pathname expansion on the name of the array element.

An array can also be created with the declare command:

[me@linuxbox ~]$ declare -a a

Using the -a option, this example of declare creates the array a.

Assigning Values to an Array
Values may be assigned in one of two ways. Single values may be assigned
using the following syntax:

name[subscript]=value

where name is the name of the array and subscript is an integer (or arith-
metic expression) greater than or equal to 0. Note that the first element of
an array is subscript 0, not 1. value is a string or integer assigned to the array
element.

Multiple values may be assigned using the following syntax:

name=(value1 value2 ...)

where name is the name of the array and value1 value2 ... are values assigned
sequentially to elements of the array, starting with element 0. For example,

416 Chapter 35

www.it-ebooks.info

http://www.it-ebooks.info/

if we wanted to assign abbreviated days of the week to the array days, we
could do this:

[me@linuxbox ~]$ days=(Sun Mon Tue Wed Thu Fri Sat)

It is also possible to assign values to a specific element by specifying a
subscript for each value:

[me@linuxbox ~]$ days=([0]=Sun [1]=Mon [2]=Tue [3]=Wed [4]=Thu [5]=Fri [6]=Sat)

Accessing Array Elements
So what are arrays good for? Just as many data-management tasks can be
performed with a spreadsheet program, many programming tasks can
be performed with arrays.

Let’s consider a simple data-gathering and presentation example. We
will construct a script that examines the modification times of the files in a
specified directory. From this data, our script will output a table showing at
what hour of the day the files were last modified. Such a script could be used
to determine when a system is most active. This script, called hours, produces
this result:

[me@linuxbox ~]$ hours .
Hour Files Hour Files
---- ----- ---- -----
00 0 12 11
01 1 13 7
02 0 14 1
03 0 15 7
04 1 16 6
05 1 17 5
06 6 18 4
07 3 19 4
08 1 20 1
09 14 21 0
10 2 22 0
11 5 23 0

Total files = 80

We execute the hours program, specifying the current directory as the
target. It produces a table showing, for each hour of the day (0–23), how
many files were last modified. The code to produce this is as follows:

#!/bin/bash

hours : script to count files by modification time

usage () {
echo "usage: $(basename $0) directory" >&2

}

Arrays 417
www.it-ebooks.info

http://www.it-ebooks.info/

Check that argument is a directory
if [[! -d $1]]; then

usage
exit 1

fi

Initialize array
for i in {0..23}; do hours[i]=0; done

Collect data
for i in $(stat -c %y "$1"/* | cut -c 12-13); do

j=${i/#0}
((++hours[j]))
((++count))

done

Display data
echo -e "Hour\tFiles\tHour\tFiles"
echo -e "----\t-----\t----\t-----"
for i in {0..11}; do

j=$((i + 12))
printf "%02d\t%d\t%02d\t%d\n" $i ${hours[i]} $j ${hours[j]}

done
printf "\nTotal files = %d\n" $count

The script consists of one function (usage) and a main body with four
sections. In the first section, we check that there is a command-line argu-
ment and that it is a directory. If it is not, we display the usage message
and exit.

The second section initializes the array hours. It does this by assigning
each element a value of 0. There is no special requirement to prepare arrays
prior to use, but our script needs to ensure that no element is empty. Note
the interesting way the loop is constructed. By employing brace expansion
({0..23}), we are able to easily generate a sequence of words for the for
command.

The next section gathers the data by running the stat program on each
file in the directory. We use cut to extract the two-digit hour from the result.
Inside the loop, we need to remove leading zeros from the hour field, since
the shell will try (and ultimately fail) to interpret values 00 through 09 as
octal numbers (see Table 34-1). Next, we increment the value of the array
element corresponding with the hour of the day. Finally, we increment a
counter (count) to track the total number of files in the directory.

The last section of the script displays the contents of the array. We first
output a couple of header lines and then enter a loop that produces two
columns of output. Lastly, we output the final tally of files.

Array Operations
There are many common array operations. Such things as deleting arrays,
determining their size, sorting, and so on have many applications in scripting.

418 Chapter 35

www.it-ebooks.info

http://www.it-ebooks.info/

Outputting the Entire Contents of an Array
The subscripts * and @ can be used to access every element in an array. As
with positional parameters, the @ notation is the more useful of the two.
Here is a demonstration:

[me@linuxbox ~]$ animals=("a dog" "a cat" "a fish")
[me@linuxbox ~]$ for i in ${animals[*]}; do echo $i; done
a
dog
a
cat
a
fish
[me@linuxbox ~]$ for i in ${animals[@]}; do echo $i; done
a
dog
a
cat
a
fish
[me@linuxbox ~]$ for i in "${animals[*]}"; do echo $i; done
a dog a cat a fish
[me@linuxbox ~]$ for i in "${animals[@]}"; do echo $i; done
a dog
a cat
a fish

We create the array animals and assign it three two-word strings. We then
execute four loops to see the effect of word-splitting on the array contents.
The behavior of notations ${animals[*]} and ${animals[@]} is identical until
they are quoted. The * notation results in a single word containing the array’s
contents, while the @ notation results in three words, which matches the
array’s “real” contents.

Determining the Number of Array Elements
Using parameter expansion, we can determine the number of elements in
an array in much the same way as finding the length of a string. Here is an
example:

[me@linuxbox ~]$ a[100]=foo
[me@linuxbox ~]$ echo ${#a[@]} # number of array elements
1
[me@linuxbox ~]$ echo ${#a[100]} # length of element 100
3

We create array a and assign the string foo to element 100. Next, we use
parameter expansion to examine the length of the array, using the @ nota-
tion. Finally, we look at the length of element 100, which contains the string
foo. It is interesting to note that while we assigned our string to element 100,
bash reports only one element in the array. This differs from the behavior of
some other languages, in which the unused elements of the array (elements
0–99) would be initialized with empty values and counted.

Arrays 419
www.it-ebooks.info

http://www.it-ebooks.info/

Finding the Subscripts Used by an Array
As bash allows arrays to contain “gaps” in the assignment of subscripts, it is
sometimes useful to determine which elements actually exist. This can be
done with a parameter expansion using the following forms:

${!array[*]}
${!array[@]}

where array is the name of an array variable. Like the other expansions that
use * and @, the @ form enclosed in quotes is the most useful, as it expands
into separate words:

[me@linuxbox ~]$ foo=([2]=a [4]=b [6]=c)
[me@linuxbox ~]$ for i in "${foo[@]}"; do echo $i; done
a
b
c
[me@linuxbox ~]$ for i in "${!foo[@]}"; do echo $i; done
2
4
6

Adding Elements to the End of an Array
Knowing the number of elements in an array is no help if we need to append
values to the end of an array, since the values returned by the * and @ nota-
tions do not tell us the maximum array index in use. Fortunately, the shell
provides us with a solution. By using the += assignment operator, we can
automatically append values to the end of an array. Here, we assign three
values to the array foo, and then append three more.

[me@linuxbox ~]$ foo=(a b c)
[me@linuxbox ~]$ echo ${foo[@]}
a b c
[me@linuxbox ~]$ foo+=(d e f)
[me@linuxbox ~]$ echo ${foo[@]}
a b c d e f

Sorting an Array
Just as with spreadsheets, it is often necessary to sort the values in a column
of data. The shell has no direct way of doing this, but it’s not hard to do with
a little coding:

#!/bin/bash

array-sort : Sort an array

a=(f e d c b a)
echo "Original array: ${a[@]}"
a_sorted=($(for i in "${a[@]}"; do echo $i; done | sort))
echo "Sorted array: ${a_sorted[@]}"

420 Chapter 35

www.it-ebooks.info

http://www.it-ebooks.info/

When executed, the script produces this:

[me@linuxbox ~]$ array-sort
Original array: f e d c b a
Sorted array: a b c d e f

The script operates by copying the contents of the original array (a)
into a second array (a_sorted) with a tricky piece of command substitution.
This basic technique can be used to perform many kinds of operations on
the array by changing the design of the pipeline.

Deleting an Array
To delete an array, use the unset command:

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ echo ${foo[@]}
a b c d e f
[me@linuxbox ~]$ unset foo
[me@linuxbox ~]$ echo ${foo[@]}

[me@linuxbox ~]$

unset may also be used to delete single array elements:

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ echo ${foo[@]}
a b c d e f
[me@linuxbox ~]$ unset 'foo[2]'
[me@linuxbox ~]$ echo ${foo[@]}
a b d e f

In this example, we delete the third element of the array, subscript 2.
Remember, arrays start with subscript 0, not 1! Notice also that the array
element must be quoted to prevent the shell from performing pathname
expansion.

Interestingly, the assignment of an empty value to an array does not
empty its contents:

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo[@]}
b c d e f

Any reference to an array variable without a subscript refers to element 0
of the array:

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ echo ${foo[@]}
a b c d e f
[me@linuxbox ~]$ foo=A
[me@linuxbox ~]$ echo ${foo[@]}
A b c d e f

Arrays 421
www.it-ebooks.info

http://www.it-ebooks.info/

Final Note
If we search the bash man page for the word array, we find many instances
in which bash makes use of array variables. Most of these are rather obscure,
but they may provide occasional utility in some special circumstances. In
fact, the entire topic of arrays is rather underutilized in shell programming,
largely because the traditional Unix shell programs (such as sh) lacked any
support for arrays. This lack of popularity is unfortunate, because arrays are
widely used in other programming languages and provide a powerful tool
for solving many kinds of programming problems.

Arrays and loops have a natural affinity and are often used together.
The following form of loop is particularly well suited to calculating array
subscripts:

for ((expr1; expr2; expr3))

422 Chapter 35

www.it-ebooks.info

http://www.it-ebooks.info/

E X O T I C A

In this, the final chapter of our journey, we will look at
some odds and ends. While we have certainly covered
a lot of ground in the previous chapters, there are many
bash features that we have not covered. Most are fairly
obscure and useful mainly to those integrating bash into a Linux distribu-
tion. However, there are a few that, while not in common use, are helpful
for certain programming problems. We will cover them here.

Group Commands and Subshells
bash allows commands to be grouped together. This can be done in one of
two ways: either with a group command or with a subshell. Here are examples
of the syntax of each.

Group command:

{ command1; command2; [command3; ...] }

Subshell:

(command1; command2; [command3;...])

www.it-ebooks.info

http://www.it-ebooks.info/

The two forms differ in that a group command surrounds its commands
with braces and a subshell uses parentheses. It is important to note that, due
to the way bash implements group commands, the braces must be separated
from the commands by a space and the last command must be terminated
with either a semicolon or a newline prior to the closing brace.

Performing Redirections
So what are group commands and subshells good for? While they have an
important difference (which we will get to in a moment), they are both used
to manage redirection. Let’s consider a script segment that performs redir-
ections on multiple commands:

ls -l > output.txt
echo "Listing of foo.txt" >> output.txt
cat foo.txt >> output.txt

This is pretty straightforward: three commands with their output
redirected to a file named output.txt. Using a group command, we could
code this as follows:

{ ls -l; echo "Listing of foo.txt"; cat foo.txt; } > output.txt

Using a subshell is similar:

(ls -l; echo "Listing of foo.txt"; cat foo.txt) > output.txt

Using this technique, we have saved ourselves some typing, but where a
group command or subshell really shines is with pipelines. When construct-
ing a pipeline of commands, it is often useful to combine the results of sev-
eral commands into a single stream. Group commands and subshells make
this easy:

{ ls -l; echo "Listing of foo.txt"; cat foo.txt; } | lpr

Here we have combined the output of our three commands and piped
them into the input of lpr to produce a printed report.

Process Substitution
While they look similar and can both be used to combine streams for
redirection, there is an important difference between group commands
and subshells. Whereas a group command executes all of its commands
in the current shell, a subshell (as the name suggests) executes its com-
mands in a child copy of the current shell. This means that the environ-
ment is copied and given to a new instance of the shell. When the subshell
exits, the copy of the environment is lost, so any changes made to the
subshell’s environment (including variable assignment) are lost as well.

424 Chapter 36

www.it-ebooks.info

http://www.it-ebooks.info/

Therefore, in most cases, unless a script requires a subshell, group com-
mands are preferable to subshells. Group commands are both faster and
require less memory.

We saw an example of the subshell environment problem in Chapter 28,
when we discovered that a read command in a pipeline does not work as we
might intuitively expect. To recap, when we construct a pipeline like this:

echo "foo" | read
echo $REPLY

the content of the REPLY variable is always empty, because the read command
is executed in a subshell and its copy of REPLY is destroyed when the subshell
terminates.

Because commands in pipelines are always executed in subshells, any
command that assigns variables will encounter this issue. Fortunately, the
shell provides an exotic form of expansion called process substitution that can
be used to work around this problem.

Process substitution is expressed in two ways: for processes that produce
standard output:

<(list)

or for processes that intake standard input:

>(list)

where list is a list of commands.
To solve our problem with read, we can employ process substitution

like this:

read < <(echo "foo")
echo $REPLY

Process substitution allows us to treat the output of a subshell as an
ordinary file for purposes of redirection. In fact, since it is a form of expan-
sion, we can examine its real value:

[me@linuxbox ~]$ echo <(echo "foo")
/dev/fd/63

By using echo to view the result of the expansion, we see that the output
of the subshell is being provided by a file named /dev/fd/63.

Process substitution is often used with loops containing read. Here is an
example of a read loop that processes the contents of a directory listing cre-
ated by a subshell:

#!/bin/bash

pro-sub : demo of process substitution

while read attr links owner group size date time filename; do

Exotica 425
www.it-ebooks.info

http://www.it-ebooks.info/

 cat <<- EOF
 Filename: $filename
 Size: $size
 Owner: $owner
 Group: $group
 Modified: $date $time
 Links: $links
 Attributes: $attr

 EOF
done < <(ls -l | tail -n +2)

The loop executes read for each line of a directory listing. The listing
itself is produced on the final line of the script. This line redirects the out-
put of the process substitution into the standard input of the loop. The tail
command is included in the process substitution pipeline to eliminate the
first line of the listing, which is not needed.

When executed, the script produces output like this:

[me@linuxbox ~]$ pro_sub | head -n 20
Filename: addresses.ldif
Size: 14540
Owner: me
Group: me
Modified: 2012-04-02 11:12
Links: 1
Attributes: -rw-r--r--

Filename: bin
Size: 4096
Owner: me
Group: me
Modified: 2012-07-10 07:31
Links: 2
Attributes: drwxr-xr-x

Filename: bookmarks.html
Size: 394213
Owner: me
Group: me

Traps
In Chapter 10, we saw how programs can respond to signals. We can add
this capability to our scripts, too. While the scripts we have written so far
have not needed this capability (because they have very short execution
times and do not create temporary files), larger and more complicated
scripts may benefit from having a signal-handling routine.

When we design a large, complicated script, it is important to consider
what happens if the user logs off or shuts down the computer while the
script is running. When such an event occurs, a signal will be sent to all
affected processes. In turn, the programs representing those processes can
perform actions to ensure a proper and orderly termination of the program.
Let’s say, for example, that we wrote a script that created a temporary file

426 Chapter 36

www.it-ebooks.info

http://www.it-ebooks.info/

during its execution. In the course of good design, we would have the script
delete the file when the script finishes its work. It would also be smart to
have the script delete the file if a signal is received indicating that the pro-
gram was going to be terminated prematurely.

bash provides a mechanism for this purpose known as a trap. Traps are
implemented with the appropriately named built-in command trap. trap
uses the following syntax:

trap argument signal [signal...]

where argument is a string that will be read and treated as a command, and
signal is the specification of a signal that will trigger the execution of the
interpreted command.

Here is a simple example:

#!/bin/bash

trap-demo : simple signal handling demo

trap "echo 'I am ignoring you.'" SIGINT SIGTERM

for i in {1..5}; do
echo "Iteration $i of 5"
sleep 5

done

This script defines a trap that will execute an echo command each time
either the SIGINT or SIGTERM signal is received while the script is running.
Execution of the program looks like this when the user attempts to stop the
script by pressing CTRL-C:

[me@linuxbox ~]$ trap-demo
Iteration 1 of 5
Iteration 2 of 5
I am ignoring you.
Iteration 3 of 5
I am ignoring you.
Iteration 4 of 5
Iteration 5 of 5

As we can see, each time the user attempts to interrupt the program,
the message is printed instead.

Constructing a string to form a useful sequence of commands can be
awkward, so it is common practice to specify a shell function as the com-
mand. In this example, a separate shell function is specified for each signal
to be handled:

#!/bin/bash

trap-demo2 : simple signal handling demo

exit_on_signal_SIGINT () {
echo "Script interrupted." 2>&1
exit 0

}

Exotica 427
www.it-ebooks.info

http://www.it-ebooks.info/

exit_on_signal_SIGTERM () {
echo "Script terminated." 2>&1
exit 0

}

trap exit_on_signal_SIGINT SIGINT
trap exit_on_signal_SIGTERM SIGTERM

for i in {1..5}; do
echo "Iteration $i of 5"
sleep 5

done

This script features two trap commands, one for each signal. Each trap,
in turn, specifies a shell function to be executed when the particular signal
is received. Note the inclusion of an exit command in each of the signal-
handling functions. Without an exit, the script would continue after com-
pleting the function.

When the user presses CTRL-C during the execution of this script, the
results look like this:

[me@linuxbox ~]$ trap-demo2
Iteration 1 of 5
Iteration 2 of 5
Script interrupted.

T E M P O R A R Y F I L E S
One reason signal handlers are included in scripts is to remove temporary files
that the script may create to hold intermediate results during execution. There
is something of an art to naming temporary files. Traditionally, programs on
Unix-like systems create their temporary files in the /tmp directory, a shared
directory intended for such files. However, since the directory is shared, this
poses certain security concerns, particularly for programs running with super-
user privileges. Aside from the obvious step of setting proper permissions for
files exposed to all users of the system, it is important to give temporary files
non-predictable filenames. This avoids an exploit known as a temp race attack.
One way to create a non-predictable (but still descriptive) name is to do some-
thing like this:

tempfile=/tmp/$(basename $0).$$.$RANDOM

This will create a filename consisting of the program’s name, followed by
its process ID (PID), followed by a random integer. Note, however, that the
$RANDOM shell variable returns a value only in the range of 1 to 32767, which is
not a very large range in computer terms, so a single instance of the variable
is not sufficient to overcome a determined attacker.

A better way is to use the mktemp program (not to be confused with the
mktemp standard library function) to both name and create the temporary file.

428 Chapter 36

www.it-ebooks.info

http://www.it-ebooks.info/

The mktemp program accepts a template as an argument that is used to build
the filename. The template should include a series of X characters, which are
replaced by a corresponding number of random letters and numbers. The
longer the series of X characters, the longer the series of random characters.
Here is an example:

tempfile=$(mktemp /tmp/foobar.$$.XXXXXXXXXX)

This creates a temporary file and assigns its name to the variable tempfile.
The X characters in the template are replaced with random letters and numbers
so that the final filename (which, in this example, also includes the expanded value
of the special parameter $$ to obtain the PID) might be something like

/tmp/foobar.6593.UOZuvM6654

While the mktemp man page states that mktemp makes a temporary filename,
mktemp also creates the file as well.

For scripts that are executed by regular users, it may be wise to avoid the
use of the /tmp directory and create a directory for temporary files within the
user’s home directory, with a line of code such as this:

[[-d $HOME/tmp]] || mkdir $HOME/tmp

Asynchronous Execution
It is sometimes desirable to perform more than one task at the same time.
We have seen that all modern operating systems are at least multitasking if
not multiuser as well. Scripts can be constructed to behave in a multitasking
fashion.

Usually this involves launching a script that, in turn, launches one or
more child scripts that perform an additional task while the parent script
continues to run. However, when a series of scripts runs this way, there can
be problems keeping the parent and child coordinated. That is, what if the
parent or child is dependent on the other, and one script must wait for the
other to finish its task before finishing its own?

bash has a built-in command to help manage asynchronous execution such
as this. The wait command causes a parent script to pause until a specified
process (i.e., the child script) finishes.

wait
We will demonstrate the wait command first. To do this, we will need two
scripts. Here is the parent script:

#!/bin/bash

async-parent : Asynchronous execution demo (parent)

echo "Parent: starting..."

Exotica 429
www.it-ebooks.info

http://www.it-ebooks.info/

echo "Parent: launching child script..."
async-child &
pid=$!
echo "Parent: child (PID= $pid) launched."

echo "Parent: continuing..."
sleep 2

echo "Parent: pausing to wait for child to finish..."
wait $pid

echo "Parent: child is finished. Continuing..."
echo "Parent: parent is done. Exiting."

And here is the child script:

#!/bin/bash

async-child : Asynchronous execution demo (child)

echo "Child: child is running..."
sleep 5
echo "Child: child is done. Exiting."

In this example, we see that the child script is very simple. The real
action is being performed by the parent. In the parent script, the child script
is launched and put into the background. The process ID of the child script is
recorded by assigning the pid variable with the value of the $! shell param-
eter, which will always contain the process ID of the last job put into the
background.

The parent script continues and then executes a wait command with
the PID of the child process. This causes the parent script to pause until the
child script exits, at which point the parent script concludes.

When executed, the parent and child scripts produce the following
output:

[me@linuxbox ~]$ async-parent
Parent: starting...
Parent: launching child script...
Parent: child (PID= 6741) launched.
Parent: continuing...
Child: child is running...
Parent: pausing to wait for child to finish...
Child: child is done. Exiting.
Parent: child is finished. Continuing...
Parent: parent is done. Exiting.

Named Pipes
In most Unix-like systems, it is possible to create a special type of file called
a named pipe. Named pipes are used to create a connection between two pro-
cesses and can be used just like other types of files. They are not that popu-
lar, but they’re good to know about.

430 Chapter 36

www.it-ebooks.info

http://www.it-ebooks.info/

There is a common programming architecture called client/server, which
can make use of a communication method such as named pipes, as well as
other kinds of interprocess communication such as network connections.

The most widely used type of client/server system is, of course, a web
browser communicating with a web server. The web browser acts as the cli-
ent, making requests to the server, and the server responds to the browser
with web pages.

Named pipes behave like files but actually form first-in, first-out (FIFO)
buffers. As with ordinary (unnamed) pipes, data goes in one end and emerges
out the other. With named pipes, it is possible to set up something like this:

process1 > named_pipe

and

process2 < named_pipe

and it will behave as if

process1 | process2

Setting Up a Named Pipe
First, we must create a named pipe. This is done using the mkfifo command:

[me@linuxbox ~]$ mkfifo pipe1
[me@linuxbox ~]$ ls -l pipe1
prw-r--r-- 1 me me 0 2012-07-17 06:41 pipe1

Here we use mkfifo to create a named pipe called pipe1. Using ls, we
examine the file and see that the first letter in the attributes field is p, indi-
cating that it is a named pipe.

Using Named Pipes
To demonstrate how the named pipe works, we will need two terminal win-
dows (or, alternatively, two virtual consoles). In the first terminal, we enter a
simple command and redirect its output to the named pipe:

[me@linuxbox ~]$ ls -l > pipe1

After we press ENTER, the command will appear to hang. This is because
there is nothing receiving data from the other end of the pipe yet. When
this occurs, it is said that the pipe is blocked. This condition will clear once we
attach a process to the other end and it begins to read input from the pipe.
Using the second terminal window, we enter this command:

[me@linuxbox ~]$ cat < pipe1

The directory listing produced from the first terminal window appears
in the second terminal as the output from the cat command. The ls com-
mand in the first terminal successfully completes once it is no longer
blocked.

Exotica 431
www.it-ebooks.info

http://www.it-ebooks.info/

Final Note
Well, we have completed our journey. The only thing left to do now is prac-
tice, practice, practice. Even though we covered a lot of ground in our trek,
we barely scratched the surface as far as the command line goes. There are
still thousands of command-line programs left to be discovered and enjoyed.
Start digging around in /usr/bin and you’ll see!

432 Chapter 36

www.it-ebooks.info

http://www.it-ebooks.info/

I N D E X

Symbols
--help option, 42
$*, 386
$@, 386
${!array[*]}, 420
${!array[@]}, 420
${!prefix*}, 402
${!prefix@}, 402
${#parameter}, 402
${parameter:=word}, 400
${parameter:-word}, 400
${parameter:+word}, 401
${parameter:?word}, 401
${parameter//pattern/string}, 403
${parameter/#pattern/string}, 403
${parameter/%pattern/string}, 403
${parameter/pattern/string}, 403
${parameter##pattern}, 403
${parameter#pattern}, 403
${parameter%%pattern}, 403
${parameter%pattern}, 403
$!, 430
$#, 382
$((expression)), 404
$0, 385
./configure, 302
.bash_history, 73
.bash_login, 113
.bash_profile, 112
.bashrc, 113, 115, 312, 332, 385
.profile, 113
.ssh/known_hosts, 184
/, 19

/bin, 19
/boot, 19
/boot/grub/grub.conf, 19
/boot/vmlinuz, 19
/dev, 20
/dev/cdrom, 165
/dev/dvd, 165
/dev/floppy, 165
/dev/null, 52
/etc, 20
/etc/bash.bashrc, 113
/etc/crontab, 20
/etc/fstab, 20, 160, 170
/etc/group, 79
/etc/passwd, 20, 79, 241, 245, 352
/etc/profile, 112, 114
/etc/shadow, 79
/etc/sudoers, 87
/lib, 20
/lost+found, 20
/media, 20
/mnt, 20
/opt, 20
/proc, 21
/root, 21, 88
/sbin, 21
/tmp, 21, 429
/usr, 21
/usr/bin, 21
/usr/lib, 21
/usr/local, 21
/usr/local/bin, 21, 307, 312
/usr/local/sbin, 312
/usr/sbin, 21

www.it-ebooks.info

http://www.it-ebooks.info/

/usr/share, 21
/usr/share/dict, 219
/usr/share/doc, 21, 45
/var, 22
/var/log, 22
/var/log/messages, 22, 57, 166
(()) compound command, 404, 409
[command, 365

A
a2ps command, 292
absolute pathnames, 9
alias command, 46, 111
aliases, 40, 46, 110
American National Standards

Institute (ANSI), 142
American Standard Code for

Information Interchange.
See ASCII

anchors, 219
anonymous FTP servers, 179
ANSI (American National Standards

Institute), 142
ANSI escape codes, 143
ANSI.SYS, 142
Apache web server, 104
apropos command, 43
apt-cache command, 152
apt-get command, 152
aptitude command, 152
archiving, 205
arithmetic expansion, 62, 65–66, 321,

399, 404
arithmetic expressions, 62, 396, 404,

406, 416
arithmetic operators, 62, 405
arithmetic truth tests, 342, 404
arrays

appending values to the end, 420
assigning values, 416
creating, 416
deleting, 421
determining number of

elements, 419
finding used subscripts, 420
index, 416

multidimensional, 416
reading variables into, 348
sorting, 420
subscript, 416
two-dimensional, 415

ASCII (American Standard Code for
Information Exchange),17,
68, 71, 198, 222, 292

bell character, 140
carriage return, 236
collation order, 222, 224, 339
control codes, 68, 222, 286
groff output driver, 280
linefeed character, 236
null character, 198
printable characters, 222
text, 17

aspell command, 263
assembler, 298
assembly language, 298
assignment operators, 407
asynchronous execution, 429
audio CDs, 163, 172
AWK programming language,

263, 412

B
back references, 232, 260
backslash escape sequences, 68
backslash-escaped special

characters, 140
backups, incremental, 208
basename command, 385
bash (shell) 3, 110

man page, 44
basic regular expressions, 224, 231,

257, 260, 269
bc command, 412
Berkeley Software Distribution

(BSD), 290
bg command, 102
binary, 81–82, 85, 298, 405
bit mask, 84
bit operators, 409
Bourne, Steve, 3
brace expansion, 63, 65, 394

434 Index

www.it-ebooks.info

http://www.it-ebooks.info/

branching, 333
break command, 360, 389
broken links, 37
BSD (Berkeley Software

Distribution), 290
BSD-style behavior, 98
buffering, 164
bugs, 369–373
build environment, 302
bzip2 command, 204

C
C programming language, 298,

396, 407, 410
C++ programming language, 298
cal command, 5
cancel command, 296
carriage return, 17, 68, 140,

222–223, 235, 262, 289
case compound command, 376
cat command, 53, 235
cd command, 9–10
cdrecord command, 172
CD-ROMs, 162–163, 172
cdrtools package, 172
character classes, 26–27, 220-224,

227, 255, 262
character ranges, 27, 220–221, 262
chgrp command, 91
child process, 96
chmod command, 81, 92, 311
chown command, 90, 92
chronological sorting, 241
cleartext, 179, 182
client-server architecture, 431
COBOL programming language, 298
collation order, 111, 222, 224,

254, 339
ASCII, 224, 339
dictionary, 222
traditional, 224

comm command, 249
command history, 4, 73
command line

arguments, 382
editing, 4, 70

expansion, 59
history, 4, 74
interfaces, 26, 28

command options, 14
command substitution, 64–65, 394
commands

arguments, 14, 382
determining type, 40
documentation, 41
executable program files, 40, 299
executing as another user, 87
long options, 14
options, 14

comments, 114, 118, 262, 310, 371
Common Unix Printing System

(CUPS), 288
comparison operators, 409
compiling, 298
completions, 72
compound commands

(()), 342, 354, 404
[[]], 341, 354
case, 376
for, 393
if, 334
until, 361
while, 358

compression algorithms, 202
conditional expressions, 366
configuration files, 17, 20, 109
configure command, 302
constants, 319
continue command, 360
control characters, 141, 235
control codes, 68, 222
control operators

&&, 345, 354
||, 345

controlling terminal, 96
COPYING (documentation file), 301
copying and pasting

on the command line, 70
in vim, 129
with X Window System, 5

coreutils package, 42, 44–45, 246
counting words in a file, 55

Index 435

www.it-ebooks.info

http://www.it-ebooks.info/

cp command, 28, 33, 116, 185
CPU, 95, 298
cron job, 189
crossword puzzles, 219
csplit command, 266
CUPS (Common Unix Printing

System), 288
current working directory, 8
cursor movement, 70
cut command, 243, 403

D
daemon programs, 96, 104
data compression, 202
data redundancy, 202
data validation, 341
date command, 5
date formats, 241
dd command, 171
Debian, 150
debugging, 330, 370
defensive programming, 367, 370
delimiters, 66, 239, 241
dependencies, 151, 305
design, 368, 370
device drivers, 156, 298
device names, 164
device nodes, 20
df command, 6, 331
DHCP (Dynamic Host Configuration

Protocol), 178
diction program, 300
dictionary collation order, 222
diff command, 250
Digital Rights Management

(DRM), 151
directories

archiving, 205
changing, 9
copying, 28
creating, 28, 33
current working, 8
deleting, 31, 37
hierarchical, 7
home, 20, 79, 332
listing, 13

moving, 30, 35
navigating, 7
OLD_PWD variable, 111
parent, 8
PATH variable, 111
PWD variable, 112
removing, 31, 37
renaming, 30, 35
root, 7
shared, 91
sticky bit, 86
synchronizing, 211
transferring over a network, 211
viewing contents, 8

disk partitions, 161
DISPLAY variable, 111
Dolphin, 28
dos2unix command, 236
double quotes, 65
dpkg command, 152
DRM (Digital Rights

Management), 151
du command, 238, 332
Dynamic Host Configuration

Protocol (DHCP), 178

E
echo command, 60, 111, 316

-e option, 68
-n option, 349

edge and corner cases, 370
EDITOR variable, 111
effective group ID, 86
effective user ID, 86, 96
elif statement, 339
email, 234
embedded systems, 298
empty variables, 400
encrypted tunnels, 185
encryption, 255
endless loop, 361
end-of-file, 54, 322
enscript command, 294
environment, 88, 109, 353

aliases, 110
establishing, 112

436 Index

www.it-ebooks.info

http://www.it-ebooks.info/

examining, 110
login shell, 112
shell functions, 110
shell variables, 110
startup files, 112
subshells, 424
variables, 110

eqn command, 279
executable programs, 40, 299, 303

determining location, 41
PATH variable, 111

exit command, 6, 338, 356
exit status, 334, 338
expand command, 246
expansions, 59

arithmetic, 62, 65–66, 321,
399, 404

brace, 63, 65, 394
command substitution,

64–65, 394
delimiters, 66
errors resulting from, 365
history, 74–76
parameter, 64, 65–66, 319,

323, 399
pathname, 60, 65, 394
tilde, 61, 65
word splitting, 65

expressions
arithmetic, 62, 396, 404, 406, 416
conditional, 366

ext3 filesystem, 169
extended regular expressions, 224
Extensible Markup Language

(XML), 234

F
false command, 335
fdformat command, 171
fdisk command, 167
fg command, 102
FIFO (first-in, first-out), 431
file command, 16
file descriptor, 51
File Transfer Protocol (FTP), 179

filenames, 198
case sensitive, 11
embedded spaces in, 11, 232
extensions, 11
hidden, 11

files
access, 78
archiving, 205, 209
attributes, 79
block special, 80
block special device, 190
changing file mode, 81
changing owner and group

owner, 90
character special, 80
character special device, 190
compression, 202
configuration, 17, 109, 234
copying, 28, 33
copying over a network, 179
creating empty, 51
.deb, 150
deleting, 31, 37, 195
determining contents, 16
device nodes, 20
execution access, 79
expressions, 336, 338, 340
finding, 187
hidden, 11
ISO image, 172–173
listing, 8, 13
mode, 79
moving, 30, 34
owner, 81
permissions, 78
read access, 79
regular, 190
removing, 31, 37
renaming, 30, 34–35
.rpm, 150
shared library, 20
startup, 112
sticky bit, 86
symbolic links, 190
synchronizing, 211
temporary, 428

Index 437

www.it-ebooks.info

http://www.it-ebooks.info/

files (continued)
text, 17
transferring over a network, 179,

209, 211
truncating, 51
type, 79
viewing contents, 17
write access, 79

filesystem corruption, 164
filters, 55
find command, 189, 208
firewalls, 176
first-in, first-out (FIFO), 431
floppy disks, 159, 165, 171
flow control

branching, 333
case compound command, 376
elif statement, 339
endless loop, 361
for compound command, 393
for loop, 393
function statement, 327
if compound command, 334
looping, 357
menu-driven, 355
multiple-choice decisions, 375
reading files with while and until

loops, 362
terminating a loop, 360
traps, 427
until loop, 361
while loop, 359

fmt command, 271
focus policy, 5
fold command, 271
for compound command, 393
for loop, 393
Foresight, 150
Fortran programming language,

298, 395
free command, 6, 164
Free Software Foundation, xxix
fsck command, 170
FTP (File Transfer Protocol), 179
ftp command, 179, 186, 300, 323
FTP servers, 179, 323

FUNCNAME variable, 385
function statement, 327

G
gcc (compiler), 299
gedit command, 101, 115
genisoimage command, 172
Gentoo, 150
Ghostscript, 288
gid (primary group ID), 78
global variables, 328
globbing, 26
GNOME, 3, 28, 38, 84, 115, 186
gnome-terminal, 3
GNU binutils package, 395
GNU C Compiler, 299
GNU coreutils package, 42,

44–45, 246
GNU Project, 14, 29, 300–301

info command, 44–45
GNU/Linux, 29
graphical user interface (GUI), xxvi,

5, 28, 38, 70, 84, 112
grep command, 56, 216, 352
groff command, 279
group commands, 423
groups, 78

effective group ID, 86
primary group ID, 78

GUI (graphical user interface), xxvi,
5, 28, 38, 70, 84, 112

gunzip command, 202
gzip command, 45, 202

H
hard disks, 159
hard links, 23, 32, 35

creating, 35
listing, 36

head command, 56
header files, 302
“hello world” program, 310
help command, 41
here documents, 321

438 Index

www.it-ebooks.info

http://www.it-ebooks.info/

here strings, 353
hexadecimal, 82, 405
hidden files, 11, 61
hierarchical directory structure, 7
high-level programming

languages, 298
history

expansion, 74–76
searching, 74

history command, 74
home directories, 8, 10, 20, 61,

88, 111
/etc/passwd, 79
root account, 21

HOME variable, 111
hostname, 140
HTML (Hypertext Markup

Language), 234, 263, 279,
315, 326

I
id command, 78
IDE, 165
if compound command, 114,

365, 375
IFS (Internal Field Separator)

variable, 351
IMCP ECHO_REQUEST, 176
incremental backups, 208
info files, 45
init program, 96
init scripts, 96
inodes, 36
INSTALL (documentation file), 301
installation wizard, 150
integers

arithmetic, 62, 411
division, 62, 405

interactivity, 347
Internal Field Separator (IFS)

variable, 351
interpreted languages, 299
interpreted programs, 299
interpreter, 299

I/O redirection, 49. See also
redirection

ISO images, 172–173
iso9660 (device type), 162, 173

J
job control, 101
job numbers, 101
jobspec, 102
join command, 247
Joliet extensions, 173
Joy, Bill, 122

K
kate command, 115
KDE, 3, 28, 38, 84, 115, 186
kedit command, 115
kernel, xxv, xxix, 19, 43, 95, 104, 157,

165, 253, 305
device drivers, 156

key fields, 239
kill command, 103
killall command, 106
killing text, 70
Knuth, Donald, 279
Konqueror, 28, 84, 186
konsole (terminal emulator), 3
kwrite command, 101, 115

L
LANG variable, 111, 222, 224
less command, 17, 55, 211, 231
lftp command, 181
libraries, 299
line editors, 122
line-continuation character, 262, 313
linker (program), 299
linking (process), 298
links

broken, 37
creating, 32
hard, 23, 32
symbolic, 22, 33

Index 439

www.it-ebooks.info

http://www.it-ebooks.info/

Linux community, 149
Linux distributions, 149

CentOS, 150, 294
Debian, 150, 297
Fedora, xxviii, 79, 150, 294
Foresight, 150
Gentoo, 150
Linspire, 150
Mandriva, 150
OpenSUSE, xxviii, 150
packaging systems, 149
PCLinuxOS, 150
Red Hat Enterprise Linux, 150
Slackware, 150
Ubuntu, xxviii, 149–150, 294
Xandros, 150

Linux Filesystem Hierarchy Standard,
19, 312

Linux kernel, xxv, xxix, 19, 43, 95,
104, 157, 165, 253, 305

device drivers, 156
literal characters, 218
ln command, 32, 35
local variables, 329
locale, 222, 224, 254, 339
locale command, 224
localhost, 182
locate command, 188, 230
logical errors, 366
logical operators, 192–193, 343
logical relationships, 192, 195
logical volume manager (LVM),

159, 162
login prompt, 6, 180
login shell, 79, 88, 112
long options, 14
loopback interface, 178
looping, 357
loops, 367, 406, 408, 422, 425
lossless compression, 202
lossy compression, 202
lp command, 291
lpq command, 295
lpr command, 290
lprm command, 296
lpstat command, 294

ls command, 8, 13
long format, 15
viewing file attributes, 79

Lukyanov, Alexander, 181
LVM (logical volume manager),

159, 162

M
machine language, 298
maintenance, 312, 316, 318, 325
make command, 303
Makefile, 303
man command, 42
man pages, 42, 280
markup languages, 234, 279
memory

assigned to each process, 96
displaying free, 6
RSS (Resident Set Size), 98
segmentation violation, 105
usage, 98, 106
virtual, 98

menu-driven programs, 355
meta key, 72
metacharacters, 218
metadata, 150, 152
metasequences, 218
mkdir command, 28, 33
mkfifo command, 431
mkfs command, 169, 171
mkisofs command, 172
mktemp command, 428
mnemonics, 298
modal editor, 124
monospaced fonts, 288
Moolenaar, Bram, 122
mount command, 161, 173
mount points, 20, 161, 163
mounting, 160
MP3 files, 91
multiple-choice decisions, 375
multitasking, 77, 95, 429
multiuser systems, 77
mv command, 30, 34

440 Index

www.it-ebooks.info

http://www.it-ebooks.info/

N
named pipes, 430
nano command, 122
Nautilus, 28, 84, 186
netstat command, 178
networking, 175

anonymous FTP servers, 179
default route, 179
Dynamic Host Configuration

Protocol (DHCP), 178
encrypted tunnels, 185
examining network settings and

statistics, 178
File Transfer Protocol (FTP), 179
firewalls, 176
local area network (LAN), 179
loopback interface, 178
man-in-the-middle attacks, 182
routers, 178
secure communication with

remote hosts, 182
testing whether a host is alive, 176
tracing the route to a host, 177
transferring files, 211
transporting files, 179
virtual private network, 185

newline characters, 66, 140
NEWS (documentation file), 301
nl command, 268
nroff command, 279
null character, 198
number bases, 405

O
octal, 82, 405, 418
Ogg Vorbis files, 91
OLD_PWD variable, 111
OpenOffice.org Writer, 17
OpenSSH, 182
operators

arithmetic, 62, 405
assignment, 407
binary, 366
comparison, 409
ternary, 410

owning files, 78

P
package files, 150
package maintainers, 151
package management, 149

Debian style (.deb), 150
finding packages, 152
high-level tools, 152
installing packages, 153
low-level tools, 152
package repositories, 151
Red Hat style (.rpm), 150
removing packages, 154
updating packages, 154

packaging systems, 149
page-description language, 234,

281, 287
PAGER variable, 111
pagers, 18
parameter expansion, 64, 65–66,

319, 323, 399
parent process, 96
passwd command, 93
passwords, 93
paste command, 246
PATA hard drives, 165
patch command, 253
patches, 250
PATH variable, 111, 114, 311, 327
pathname expansion, 60, 65, 394
pathnames, 230

absolute, 9
completion, 72
relative, 9

PDF (Portable Document Format),
281, 290

Perl programming language, 40, 216,
263, 299, 412

permissions, 310
PHP programming language, 299
ping command, 176
pipelines, 54, 353, 425

in command substitution, 64
portability, 304, 332, 345
Portable Document Format (PDF),

281, 292

Index 441

www.it-ebooks.info

http://www.it-ebooks.info/

Portable Operating System Inter-
face (POSIX). See POSIX
(Portable Operation System
Interface)

positional parameters, 381, 400–402
POSIX (Portable Operating Sys-

tem Interface), 222,
224–225, 345

character classes, 26, 221,
223–224, 227, 255, 262

PostScript, 234, 280, 287, 292
pr command, 274, 288
primary group ID (gid), 78
printable characters, 222
printenv command, 64, 110
printers, 164

buffering output, 164
control codes, 286
daisy-wheel, 286
device names, 165
drivers, 288
graphical, 287
impact, 286
laser, 287

printf command, 275, 398
printing

determining system status, 294
history of, 286
Internet Printing Protocol, 295
monospaced fonts, 286
preparing text, 288
pretty, 292
proportional fonts, 287
queues, 294, 295–296
spooling, 294
terminating print jobs, 296
viewing jobs, 295

process ID, 96
process substitution, 425
processes, 95

background, 101
child, 96
controlling, 100
foreground, 101
interrupting, 101
job control, 101
killing, 103

nice, 97
parent, 96
process ID, 96
SIGINT, 427
signals, 103
SIGTERM, 427
sleeping, 97
state, 97
stopping, 102
viewing, 96, 98
zombie, 97

production use, 368
programmable completion, 73
ps command, 96
PS1 variable, 112, 140
PS2 variable, 317
ps2pdf command, 281
PS4 variable, 372
pseudocode, 333, 358
pstree command, 106
PuTTY, 186
pwd command, 8
PWD variable, 112
Python programming language, 299

Q
quoting, 65

double quotes, 65
escape character, 67
missing quote, 364
single quotes, 67

R
RAID (redundant array of

independent disks), 159
raster image processor (RIP), 288
read command, 348–351, 362,

368, 425
Readline, 70
README (documentation file),

45, 301
redirection

blocked pipe, 431
group commands and

subshells, 424

442 Index

www.it-ebooks.info

http://www.it-ebooks.info/

here documents, 321
here strings, 353
standard error, 51
standard input, 53, 323
standard output, 50

redirection operators
&>, 52
>, 50
>>, 51
>(list), 425
<, 54
<<, 322–323
<<-, 323
<<<, 353
<(list), 425
|, 54

redundant array of independent disks
(RAID), 159

regular expressions, 56, 215, 259,
341, 352

anchors, 219
back references, 232, 259–260
basic, 224, 231–232, 257, 260, 269
extended, 224

relational databases, 247
relative pathnames, 9
“release early, release often,” 369
removing duplicate lines in a file, 55
REPLY variable, 348, 425
report generator, 315
repositories, 151
return command, 328, 338
RIP (raster image processor), 288
rlogin command, 182
rm command, 31
Rock Ridge extensions, 173
roff command, 279
ROT13 encoding, 255
rpm command, 152
rsync command, 212
rsync remote-update protocol, 212
Ruby programming language, 299

S
scalar variables, 415
Schilling, Jörg, 172

scp command, 185
script command, 76
scripting languages, 40, 299
sdiff command, 266
searching a file for patterns, 56
searching history, 74
Secure Shell (SSH), 182
sed command, 256, 282, 403
set command, 110, 371
setuid, 86, 337
Seward, Julian, 204
sftp command, 186
shared libraries, 20, 151
shebang, 311
shell builtins, 40
shell functions, 40, 110, 327, 385
shell prompts, 4, 9, 75, 88, 101, 112,

139, 183, 317
shell scripts, 309
SHELL variable, 111
shell variables, 110
shift command, 383, 388
SIGINT signal, 427
signals, 426
single quotes, 67
Slackware, 150
sleep command, 360
soft link, 22
sort command, 55, 236
sort keys, 239
source code, 150, 156, 235, 297
source command, 118, 312
source tree, 300
special parameters, 385, 401
split command, 266
SSH (Secure Shell), 182
ssh program, 77, 183, 209
Stallman, Richard, xxv, xxix, 116,

225, 299
standard error, 50

disposing of, 52
redirecting to a file, 51

standard input, 50, 323, 348
redirecting, 53

standard output, 50
appending to a file, 51
disposing of, 52

Index 443

www.it-ebooks.info

http://www.it-ebooks.info/

standard output (continued)
redirecting standard error to, 52
redirecting to a file, 50

startup files, 112
stat command, 199
sticky bit, 86
storage devices, 159

audio CDs, 163, 172
CD-ROMs, 162–163, 172
creating filesystems, 167
device names, 164
disk partitions, 161
FAT32, 167
floppy disks, 165, 171
formatting, 167
LVM, 162
mount points, 161, 163
partitions, 167
reading and writing directly, 171
repairing filesystems, 170
unmounting, 163
USB flash drives, 171

stream editor, 256, 282, 403
strings

${parameter:offset}, 402
${parameter:offset:length}, 402
extract a portion of, 402
length of, 402
perform search and replace

upon, 403
remove leading portion of, 403
remove trailing portion of, 403

strings command, 395
stubs, 330, 369
style (program file), 302
su command, 87
subshells, 353, 423
sudo command, 87–89
Sun Microsystems, 122
superuser, 4, 79, 88, 106
symbolic links, 22, 33, 36

creating, 36, 38
listing, 36

syntax errors, 363
syntax highlighting, 310, 314

T
tables, 247
tabular data, 239, 278
tail command, 56
tape archive, 205
tar command, 205
tarballs, 300
targets, 303
Task Manager, 100
Tatham, Simon, 186
tbl command, 279, 282
tee command, 57
teletype, 96
telnet command, 182
TERM variable, 112
terminal emulators, 3
terminal sessions

controlling the terminal, 96
effect of .bashrc, 312
environment, 88
exiting, 6
login shell, 88, 112
with remote systems, 77
TERM variable, 112
using named pipes, 431
virtual, 6

terminals, 71, 77, 142, 279
ternary operator, 410
test cases, 369
test command, 336, 341, 359, 366
test coverage, 370
testing, 369–370
TEX, 279
text, 17

adjusting line length, 271
ASCII, 17
carriage return, 236
comparing, 249
converting MS-DOS to Unix, 254
counting words, 55
cutting, 243
deleting duplicate lines, 242
deleting multiple blank lines, 236
detecting differences, 250
displaying common lines, 249

444 Index

www.it-ebooks.info

http://www.it-ebooks.info/

displaying control characters, 235
DOS format, 236
EDITOR variable, 111
expanding tabs, 246
files, 17
filtering, 55
folding, 271
formatting, 268
formatting for typesetters, 279
formatting tables, 282
joining, 247
linefeed character, 236
lowercase to uppercase

conversion, 254
numbering lines, 236, 268
paginating, 274
pasting, 246
preparing for printing, 288
removing duplicate lines, 55
rendering in PostScript, 280
ROT13 encoded, 255
searching for patterns, 56
sorting, 55, 236
spell checking, 263
substituting, 259
substituting tabs for spaces, 246
tab delimited, 245
transliterating characters, 254
Unix format, 236
viewing with less, 17, 55

text editors, 115, 234, 254
emacs, 116
gedit, 115, 310
interactive, 254
kate, 115, 310
kedit, 115
kwrite, 115
line, 122
nano, 115, 122
pico, 115
stream, 256
syntax highlighting, 310, 314
vi, 115
vim, 115, 310, 314
visual, 122
for writing shell scripts, 310

tilde expansion, 61, 65
tload command, 106
top command, 98
top-down design, 326
Torvalds, Linus, xxv
touch command, 198–199, 213,

305, 389
tr command, 254
traceroute command, 177
tracing, 371
transliterating characters, 254
traps, 427
troff command, 279
true command, 335
TTY (field), 96
type command, 40
typesetters, 279, 287
TZ variable, 112

U
Ubuntu, 79, 89, 149, 222, 312
umask command, 84, 92
umount command, 163
unalias command, 47
unary operator expected (error

message), 366
unary operators, 405
unexpand command, 246
unexpected tokens, 365
uniq command, 55, 242
Unix, xxvi
Unix System V, 290
unix2dos command, 236
unset command, 421
until compound command, 361
until loop, 361
unzip command, 210
updatedb command, 189
upstream providers, 151
uptime, 326
uptime command, 331
USB flash drives, 159, 171
Usenet, 255
USER variable, 110, 112

Index 445

www.it-ebooks.info

http://www.it-ebooks.info/

users
/etc/passwd, 79
/etc/shadow, 79
accounts, 78
changing identity, 87
changing passwords, 93
effective user ID, 86, 96
home directory, 79
identity, 78
password, 79
setuid, 86
superuser, 79, 81, 86–87, 93

V
validating input, 353
variables, 64, 318, 400

assigning values, 320, 406
constants, 319
declaring, 318, 320
environment, 110
global, 328
local, 329
names, 319, 401
scalar, 415
shell, 110

vfat filesystem, 170
vi command, 121
vim command, 232, 314
virtual consoles, 6
virtual private network (VPN), 185
virtual terminals, 6
visual editors, 122
vmstat command, 106
VPN (virtual private network), 185

W
wait command, 429
wc command, 55
web pages, 234
wget command, 181
What You See Is What You Get

(WYSIWYG), 286
whatis command, 44
which command, 41
while compound command, 358
wildcards, 26, 53, 60, 216, 221
wodim command, 173
word splitting, 65–67
world, 78
WYSIWYG (What You See Is What

You Get), 286

X
X Window System, 5, 77, 185
xargs command, 197
xload command, 106
xlogo command, 100
XML (Extensible Markup

Language), 234

Y
yanking text, 70
yum command, 152

Z
zgrep command, 232
zip command, 209
zless command, 45

446 Index

www.it-ebooks.info

http://www.it-ebooks.info/

The Electronic Frontier Foundation (EFF) is the leading
organization defending civil liberties in the digital world. We defend
free speech on the Internet, fight illegal surveillance, promote the
rights of innovators to develop new digital technologies, and work to
ensure that the rights and freedoms we enjoy are enhanced —
rather than eroded — as our use of technology grows.

EFF has sued telecom giant AT&T for giving the NSA unfettered access to the
private communications of millions of their customers. eff.org/nsa

EFF’s Coders’ Rights Project is defending the rights of programmers and security
researchers to publish their findings without fear of legal challenges.
eff.org/freespeech

EFF's Patent Busting Project challenges overbroad patents that threaten
technological innovation. eff.org/patent

EFF is fighting prohibitive standards that would take away your right to receive and
use over-the-air television broadcasts any way you choose. eff.org/IP/fairuse

EFF has developed the Switzerland Network Testing Tool to give individuals the tools
to test for covert traffic filtering. eff.org/transparency

EFF is working to ensure that international treaties do not restrict our free speech,
privacy or digital consumer rights. eff.org/global

PRIVACY

FREE SPEECH

INNOVATION

FAIR USE

TRANSPARENCY

INTERNATIONAL

EFF is a member-supported organization. Join Now! www.eff.org/support

www.it-ebooks.info

http://www.it-ebooks.info/

The Linux Command Line was written using OpenOffice.org Writer on a Dell
Inspiron 530N, factory configured with Ubuntu 8.04. The fonts used in this
book are New Baskerville, Futura, TheSansMono Condensed, and Dogma.
The book was typeset in LibreOffice Writer.

This book was printed and bound at Malloy Incorporated in Ann Arbor,
Michigan. The paper is Glatfelter Spring Forge 60# Smooth, which is certi-
fied by the Sustainable Forestry Initiative (SFI). The book uses a RepKover
binding, which allows it to lie flat when open.

www.it-ebooks.info

http://www.it-ebooks.info/

More no-nonsense books from NO STARCH PRESS

THE LINUX PROGRAMMING
INTERFACE
A Linux and UNIX® System
Programming Handbook
by MICHAEL KERRISK
OCTOBER 2010, 1552 PP., $99.95, hardcover
ISBN 978-1-59327-220-3

THE TCP/IP GUIDE
A Comprehensive, Illustrated Internet
Protocols Reference
by CHARLES M. KOZIEROK
OCTOBER 2005, 1616 PP., $99.95, hardcover
ISBN 978-1-59327-047-6

THE TANGLED WEB
A Guide to Securing Modern
Web Applications
by MICHAL ZALEWSKI
NOVEMBER 2011, 320 PP., $49.95
ISBN 978-1-59327-388-0

THE ART OF R PROGRAMMING
A Tour of Statistical Software Design
by NORMAN MATLOFF
OCTOBER 2011, 400 PP., $39.95
ISBN 978-1-59327-384-2

ELOQUENT JAVASCRIPT
A Modern Introduction to
Programming
by MARIJN HAVERBEKE
JANUARY 2011, 224 PP., $29.95
ISBN 978-1-59327-282-1

THE BOOK OF CSS3
A Developer’s Guide to the
Future of Web Design
by PETER GASSTON
MAY 2011, 304 PP., $34.95
ISBN 978-1-59327-286-9

UPDATES
Visit http://nostarch.com/tlcl.htm for updates, errata, and other information.

PHONE:
800.420.7240 OR

415.863.9900

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

www.it-ebooks.info

http://www.it-ebooks.info/

You’ve experienced the shiny, point-and-click surface
of your Linux computer—now dive below and explore
its depths with the power of the command line.

The Linux Command Line takes you from your very first
terminal keystrokes to writing full programs in Bash, the
most popular Linux shell. Along the way you’ll learn
the timeless skills handed down by generations of
gray-bearded, mouse-shunning gurus: file navigation,
environment configuration, command chaining, pattern
matching with regular expressions, and more.

In addition to that practical knowledge, author William
Shotts reveals the philosophy behind these tools and
the rich heritage that your desktop Linux machine has
inherited from Unix supercomputers of yore.

As you make your way through the book’s short, easily
digestible chapters, you’ll learn how to:

• Create and delete files, directories, and symlinks

• Administer your system, including networking,
package installation, and process management

B A N I S H Y O U R
M O U S E

B A N I S H Y O U R
M O U S E

• Use standard input and output, redirection, and
pipelines

• Edit files with Vi, the world’s most popular text editor

• Write shell scripts to automate common or boring tasks

• Slice and dice text files with cut, paste, grep, patch,
and sed

Once you overcome your initial “shell shock,” you’ll
find that the command line is a natural and expressive
way to communicate with your computer. Just don’t be
surprised if your mouse starts to gather dust.

A B O U T T H E A U T H O R

William E. Shotts, Jr., has been a software professional
and avid Linux user for more than 15 years. He has an
extensive background in software development, including
technical support, quality assurance, and documentation.
He is also the creator of LinuxCommand.org, a Linux
education and advocacy site featuring news, reviews,
and extensive support for using the Linux command line.

SHELVE IN
:

COM
PUTERS/LINUX

$49.95 ($52.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

 “ I L I E F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut.

A C O M P L E T E I N T R O D U C T I O N

T H E L I N U X
CO M M A N D L I N E

T H E L I N U X
CO M M A N D L I N E

W I L L I A M E . S H O T T S , J R .

T
H

E
 L

IN
U

X
 C

O
M

M
A

N
D

 L
IN

E
T

H
E

 L
IN

U
X

 C
O

M
M

A
N

D
 L

IN
E

S
H

O
T

T
S

www.it-ebooks.info

http://www.it-ebooks.info/

