CIFP NAUTICOPESQUERA	Curs: 2024-25
	Grup:MAP33B
Avaluació Mòdul: OMF - solució	Data:11/03/25

Nom del alumne/a:

Qualificació:

Criteris de qualificació:

Temps: 100 min

Observacions: Cada nombres sense unitat resta 1 punt

Ejercicio 1: 3 p

Los datos de una cámara frigorífica son los siguientes.

Refrigerante es R404A.

Potencia del compresor es $P_{comp} = 1 \, kW$, $v_E = 0 \, ^{\circ}C$, $v_C = 45 \, ^{\circ}C$, SE = 20 K y SC = 10 K.

Temperatura de descarga 60 °C.

- a) Indica la presión de evaporación que se mide con el puente de manómetros. $p_{E} = 5,1$ bar
- b) Indica el calor latente y el calor sensible absorbidos en el evaporador en $\frac{kJ}{kq}$

$$h_{3/4} = 135 \frac{kJ}{kg}$$
 , $h_{vaporsat} = 268 \frac{kJ}{kg}$, $h_1 = 275 \frac{kJ}{kg}$, $h_2 = 305 \frac{kJ}{kg}$

calor latente =
$$h_{vapor \, sat} - h_{3/4} = 268 \, \frac{kJ}{kg} - 135 \, \frac{kJ}{kg} = 133 \, \frac{kJ}{kg}$$

calor sensible =
$$h_1 - h_{vapor sat} = 275 \frac{kJ}{kg} - 268 \frac{kJ}{kg} = 7 \frac{kJ}{kg}$$

CIFP NAUTICOPESQUERA	Curs: 2024-25				
	Grup:MAP33B				
Avaluació Mòdul: OMF - solució	Data:11/03/25				

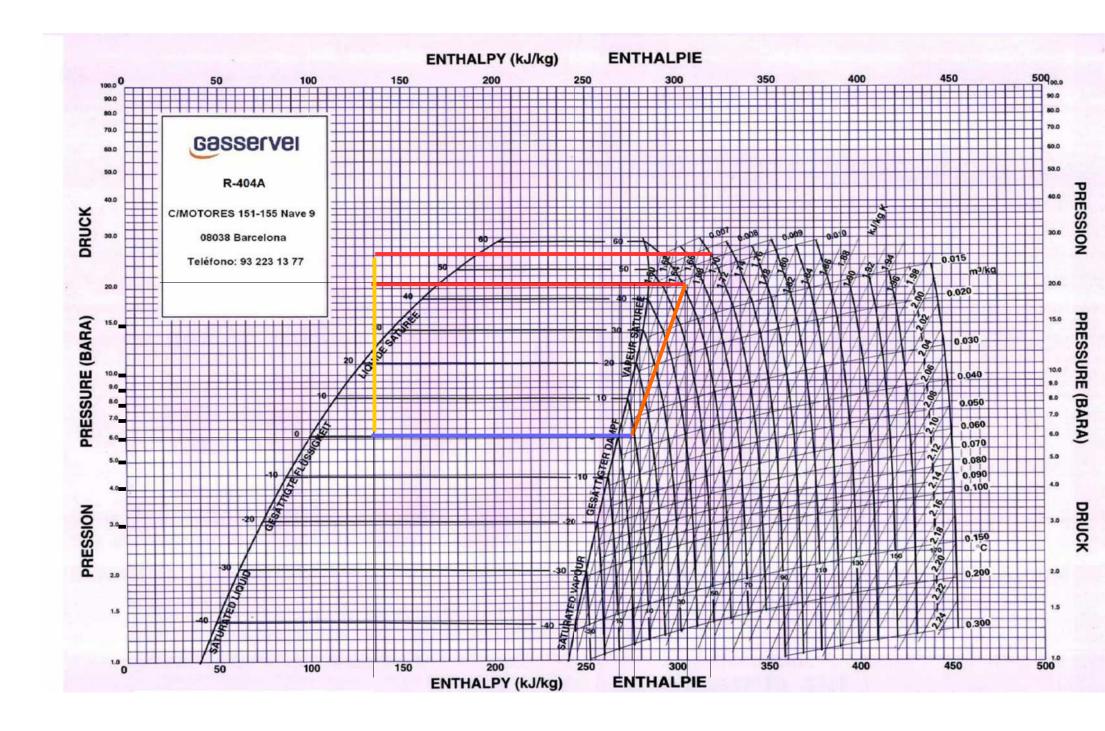
c) Calcula la eficiencia de la instalación.

$$EER = \frac{Q_E}{W_{comp}}$$
 con $Q_E = h_1 - h_{3/4} = 140 \frac{kJ}{kg}$ y $W_{comp} = h_2 - h_1 = 30 \frac{kJ}{kg}$

$$EER = \frac{140 \frac{kJ}{kg}}{30 \frac{kJ}{kg}} = 4,7$$

d) Calcula la potencia frigorífica.

$$EER = \frac{\dot{O}_E}{P_{comp}} = 4.7 \rightarrow \dot{Q}_E = 4.7 \text{ kW}$$


e) ¿Si sube la temperatura de condensación a 55 °C, la de descarga a 80 °C y el SE = 30 K, a qué valor cambia la eficiencia? Justifica la respuesta con cálculos.

$$h_2 = 318 \frac{kJ}{kg} \rightarrow W_{comp} = h_2 - h_1 = 318 \frac{kJ}{kg} - 275 \frac{kJ}{kg} = 43 \frac{kJ}{kg}$$

$$EER = \frac{Q_E}{W_{comp}} \frac{140 \frac{kJ}{kg}}{43 \frac{kJ}{kg}} = 3,3$$

f) ¿A qué valor cambia la potencia del compresor? Justifica la respuesta con cálculos.

$$EER = \frac{\dot{Q}_E}{P_{comp}} = 3.3 \rightarrow P_{comp} = \frac{\dot{Q}_E}{EER} = \frac{4.7 \, kW}{3.3} = 1.5 \, kW$$

CIFP NAUTICOPESQUERA	Curs: 2024-25
	Grup:MAP33B
Avaluació Mòdul: OMF - solució	Data:11/03/25

Ejercicio 2:

- a) Elige un evaporador para una instalación con $\dot{Q_E}=0.62\,kW$, $v_E=-4\,^oC$ $v_{aire entrada}=5\,^oC$ y $v_{aire salida}=-1\,^oC$.
- b) Indica el valor de $\Delta T = \overline{v}_{aire} v_E$.

EVAPORADORES DE TECHO INCLINADOS PARA CONSERVACIÓN Y CONGELACIÓN

Serie COMERCIAL «CR» - R404A - Aluminio blanco

Código	Modelo	€	Código	Modelo	€
		SEPARACIÓN DE	ALETA 4,5 / 9	mm	
	SIN DESESCARCHE			DESESCARCHE ELÉCTRIC	0
MF01101	CR-1	204,00	MF01111	CR-1-ED	249,00
MF01102	CR-2	228,00	MF01112	CR-2-ED	258,00
MF01103	CR-3	252,00	ME01113	CR-3-ED	296,00
MF01104	CR-4	342,00	MF01114	CR-4-ED	390,00
MF01105	CR-5	379,00	MF01115	CR-5-ED	452,00
MF01106	CR-6	498,00	MF01116	CR-6-ED	568,00
MF01107	CR-7	619,00	MF01117	CR-7-ED	697,00

Modelo	Sup.		Venti	lación		Tensión	Consumo	Peso neto (Kg)	Desc.		pacidad inp. evap -		Capacidad (W) Temp. evap -25°C		
Modelo	(m²)	Caudal (m³/h)	No	O	Flecha	(V)	máx./ud. (A)		(W)	ΔT 6°	ΔT 7°	ΔT 10°	ΔT 6°	ΔT 7°	
CR-1	1,6	280	1	200	4		0,2	4	250	201	266	511	218	275	
CR-2	2,4	270	1	200	4	8	0,2	4,3	250	263	347	628	271	338	
CR-3	3,2	270	1	200	4	ofasi	0,2	5,2	350	339	441	734	313	398	
CR-4	4,5	450	2	200	4	220V monofásico	0,2	7,8	500	603	744	1.168	531	633	
CR-5	6,1	540	2	200	4	N	0,2	9,2	700	645	843	1.427	628	776	
CR-6	8,9	880	3	200	4	X	0,2	13,3	900	1.130	1.393	2.189	998	1.196	
CR-7	11	1010	4	200	4		0,2	15,8	1.080	1,445	1.767	2.740	1.234	1.461	

CIFP NAUTICOPESQUERA	Curs: 2024-25
	Grup:MAP33B
Avaluació Mòdul: OMF - solució	Data:11/03/25

La temperatura media del aire en el evaporador es

$$\overline{v}_{aire} = \frac{v_{aire\ entrada} + v_{aire\ salida}}{2} = \frac{(5\ ^{\circ}C) + (-1\ ^{\circ}C)}{2} = \frac{4\ ^{\circ}C}{2} = 2\ ^{\circ}C$$

$$\rightarrow \Delta T = \bar{v}_{aire} - v_E = 2 \, {}^{o}C - (-4 \, {}^{o}C) = 6 \, K$$

Se elige el evaporador CR-5 de 645 W de capacidad para $\Delta T = 6 K$.

CIFP NAUTICOPESQUERA	Curs: 2024-25
	Grup:MAP33B
Avaluació Mòdul: OMF - solució	Data:11/03/25

Ejercicio 3:

Elige un condensador de la tabla para la instalación una instalación con una $\dot{Q}_E = 2\,kW$, $P_{comp} = 1\,kW$ $v_C = 55\,^{\circ}C$ $\bar{v}_{aire} = 50\,^{\circ}C$. Justifica tu elección calculando la capacidad necesaria del condensador.

CONDENSADORES DE AIRE FORZADO

Código	Modelo	Tubos	Dime	nsiones	(mm)	W Dt	Sup.	€	N	entiladores (C	PCIONAL)	
			hondo	largo	alto	15ºC	m²	sin ventilador	m³/h	Cód. motor	Pala	Nº
MF05204	CA27	9 x 3	130	300	278	100	2	127,00	500	WE04407	WE04417	
MF05200	CA16	8 x 2	87	270	230	600	1,1	86,00	410	WE04406	WE04415	
MF05203	CA18	9 x 2	85	300	278	810	1,35	95,00	550	WE04407	WE04417	
MF05201	CA24	8 x 3	112	270	230	820	1,6	105,00	360	WE04406	WE04415	
MF05202	CA32	8 x 4	132	270	230	1000	2,15	130,00	345	WE04406	WE04415	
MF05208	CA30	10 x 3	130	300	278	1200	2,25	128,00	500	WE04407	WE04417	
MF05205	CA36	9 x 4	150	300	278	1350	2,7	159,00	460	WE04407	WE04417	
MF05209	CA40	10 x 4	150	300	278	1420	3	170,00	470	WE04407	WE04417	
MF05210	CA44	11 x 4	132	300	292	1510	3,3	186,00	485	WE04408	WE04417	1
MF05206	CA45	9 x 5	152	300	278	1600	3,37	237,00	400	WE04407	WE04417	
MF05211	CA55	11 x 5	152	300	292	1890	4,12	218,00	606	WE04408	WE04417	
MF05207	CA54	9 x 6	172	300	278	1920	4	265,00	480	WE04407	WE04417	
MF05212	CA48	12 x 4	128	350	330	2820	4,25	269,00	1030	WE04408	WE04418	
MF05213	CA56	14 x 4	156	375	365	3000	5,36	248,00	1075	WE04408	WE04418	
MF05250	CDF1	14X3	153	406	372	3.030	6,33	507,00	1.747	WE04473	Ø300	
MF05253	CDG1	18X3	178	716	470	8.000	15,40	662,00	4.400	WE04206	Ø400	
MF05254	CDJ1	18X4	203	716	470	10.600	20,00	806,00	4.400	WE04206	Ø400	
MF05230	CD24	8 x 3	110	470	230	1532	2,96	229,00	700	WE04406	WE04417	
MF05231	CD30	10 x 3	110	600	278	2158	4,77	268,00	950	WE04407	WE04417	
MF05232	CD36	9 x 4	130	600	278	2700	5,72	322,00	900	WE04407	WE04417	
MF05234	CD40	10 x 4	130	600	278	3207	6,35	441,00	1100	WE04408	WE04417	
MF05233	CD50	10 x 5	150	600	278	4036	7,95	417,00	1100	WE04408	WE04417	
MF05251	CDE2	12X3	157	715	330	5.000	9,49	659,00	3.494	WE04473	Ø300	
MF05235	CD48	12 x 4	130	700	330	5440	8,94	527,00	2000	WE04408	WE04418	
MF05236	CD56	14 x 4	155	700	365	5707	10,43	601,00	2000	WE04408	WE04418	
MF05237	CD60	12 x 5	162	700	330	6629	11,18	650,00	1925	WE04408	WE04418	2

	CIFP NAUTICOPESQUERA	Curs: 2024-25
	Avaluació Mòdul: OMF - solució	Grup:MAP33B
		Data:11/03/25

$$\dot{Q}_C = \dot{Q}_E + P_{comp} = 3kW$$
 y $\Delta T = v_C - \bar{v}_{aire} = 55 \,^{\circ}C - 50 \,^{\circ}C = 5K$

Corrección de la capacidad para $\Delta T = 5 K$

$$\dot{Q}_{Ccorr} = \dot{Q}_C \cdot \frac{\Delta T_{tabla}}{\Delta T} = 3kW \cdot \frac{15K}{5K} = 9kW$$

Al ser la diferencia de temperatura $\Delta T = 5 K < \Delta T_{tabla} = 15 K$, se corrige la potencia del condensador aumentándola y se elige un condensador para la potencia corregida.

Se elige el modelo MF05254 de 10600 W de capacidad para $\Delta T\!=\!15\,K$ y 3,5 kW de capacidad para $\Delta T\!=\!5\,K$.

$$\dot{Q}_{C5K} = \dot{Q}_{Ctabla} \cdot \frac{\Delta T}{\Delta T_{tabla}} = 10,6 \, kW \cdot \frac{5K}{15K} = 3,5 \, kW$$

CIFP NAUTICOPESQUERA	Curs: 2024-25
	Grup:MAP33B
Avaluació Mòdul: OMF - solució	Data:11/03/25

Ejercicio 4: 1 p

Indica el tamaño del orificio de la VET para una instalación con los siguientes datos.

R134a,
$$\dot{Q_E}$$
=5,6 kW , υ_E =-5 ^{o}C , υ_C =40 ^{o}C , SE = 2 K

Capacidades

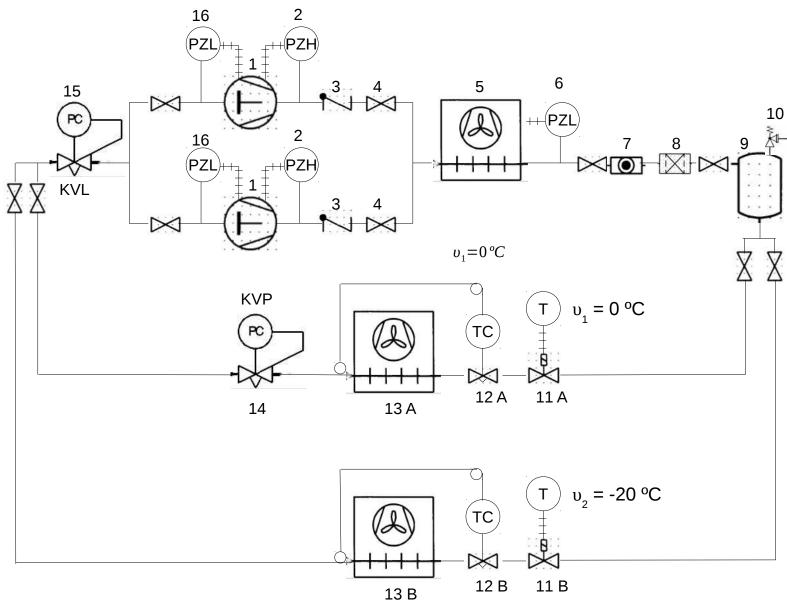
				R22			R134a						R40	4A/R	507		R407C							
Tipo de	Temp.		Capa	cidad en	[kW]			Capa	cidad en	[kW]			Capa	cidad er	[kW]			Capa	cidad en	[kW]				
válvula/	cond.1		Temp. e	vaporac	ión [°C]			Temp. 6	vapora	ción [°C]			Temp. e	vapora	ión [°C]			Temp. e	vaporac	ción [°C] 5 10 0.58 0.55 1.3 1.2 3.1 3.2 4.5 4.6 8.1 8.3				
Orificio	[°C]	-35	-30	-10	0	5	-30	-10	-5	0	5	-40	-35	-30	-10	0	-10	-5	0	5	10			
T2/0X		0.49	0.51	0.55	0.54	0.51	0.35	0.40	0.41	0.41	0.40	0.33	0.35	0.37	0.42	0.41	0.59	0.59	0.59	0.58	0.55			
T2/00		0.95	1.00	1.1	1.1	1.1	0.61	0.73	0.75	0.77	0.77	0.61	0.66	0.70	0.85	88.0	1.2	1.2	13	1.3	1.2			
T2/01		1.6	1.7	2.4	2.7	2.7	0.88	1.3	1.5	1.6	1.6	0.96	1.1	1.2	1.8	2.1	2.5	2.7	2.9	3.1	3.2			
T2/02	25	2.2	2.5	3.5	3.9	3.9	1.2	1.9	2.0	2.1	2.2	13	1.5	1.7	2.6	3.0	3.7	4.0	4.3	4.5	4.6			
T2/03	25	3.9	4.3	6.2	6.9	7.0	2.2	3.3	3.6	3.8	4.0	2.4	2.7	3.1	4.7	5.4	6.6	7.1	7.6	8.1	8.3			
T2/04		5.7	6.4	9.1	10.2	10.5	3.2	4.8	5.2	5.6	5.9	3.5	4.0	4.6	7.0	8.0	9.8	10.6	11.4	12.0	12.5			
T2/05		7.3	8.0	11.6	13.0	13.3	4.0	6.1	6.6	7.1	7.5	4.5	5.1	5.8	8.9	10.2	12.4	13.4	14.4	15.2	15.7			
T2/06		8.9	9.8	14.1	15.9	16.3	4.9	7.5	8.2	8.7	9.1	5.5	6.2	7.1	10.8	12.4	15.1	16.4	17.6	18.6	19.2			
T2/0X		0.53	0.55	0.60	0.61	0.60	0.37	0.44	0.45	0.45	0.46	0.32	034	0.36	0.42	0.43	0.61	0.62	0.63	0.63	0.62			
T2/00		1.0	1.1	1.2	1.3	1.3	0.64	0.79	0.83	0.86	0.88	0.59	0.64	0.69	0.86	0.92	1.3	1.3	1.3	1.4	1.4			
T2/01		1.7	1.8	2.6	3.0	3.2	0.93	1.4	1.6	1.7	1.9	0.92	1.1	1.2	1.8	2.2	2.7	2.9	3.1	3.3	3.5			
T2/02	35	2.3	2.6	3.8	4.4	4.7	1.3	2.0	2.2	2.4	2.6	12	1.4	1.7	2.7	3.2	3.9	4.3	4.6	5.0	5.3			
T2/03	33	4.1	4.6	6.8	79	8.4	2.3	3.6	4.0	4.4	4.7	2.2	2.6	3.0	4.8	5.7	7.0	7.6	8.3	8.9	9.4			
T2/04		6.1	6.8	10.1	11.8	12.5	3.4	5.3	5.8	6.4	6.9	3.3	3.9	4.5	7.1	8.5	10.3	11.3	12.3	13.3	14.2			
T2/05		7.7	8.6	12.8	14.9	15.8	4.2	6.7	7.4	8.1	8.8	4.3	4.9	5.6	9.0	10.7	13.0	14.3	15.6	16.7	17.8			
T2/06		9.5	10.5	15.6	18.2	19.3	5.2	8.2	9.1	9.9	10.7	5.2	6.0	6.9	11.0	13.1	15.9	17.4	19.0	20	22			
T2/0X		0.55	0.57	0.64	0.65	0.64	0.38	0.45	0.47	0.48	0.49	0.29	0.31	0.33	0.40	0.42	0.62	0.63	0.64	0.64	0.64			
T2/00		1.0	1.1	1.3	1.4	1.4	0.65	0.82	0.86	0.90	0.94	0.55	0.60	0.64	0.83	0.90	1.3	1.3	1.3	1.4	1.4			
T2/01		1.7	1.9	2.8	3.2	3.4	0.96	1.5	1.7	1.8	2.0	0.85	0.98	1.1	1.8	2.1	2.7	2.9	32	3.4	3.7			
T2/02	45	2.4	2.7	4.0	4.8	5.1	1.3	2.1	2.4	2.6	2.8	1.1	1.3	1.5	2.6	3.2	3.9	4.3	4.7	5.2	5.6			
T2/03		4.3	4.8	7.2	8.5	9.2	2.3	3.8	4.2	4.7	5.1	1.9	2.3	2.7	4.6	5.7	7.0	7.7	8.5	9.2	9.9			
T2/04		6.3	7.1	10.7	12.7	13.7	3.4	5.6	6.2	6.9	7.6	3.0	3.5	4.1	6.9	8.4	10.4	115	12.6	13.8	14.9			
T2/05		8.0	9.0	13.6	16.1	17.3	4.3	7.0	7.8	8.7	9.6	3.8	4.4	5.2	8.7	10.6	13.2	14.5	15.9	17.3	18.7			
T2/06		9.8	11.0	16.6	19.6	21	5.3	8.6	9.6	10.7	11.7	4.7	5.5	6.4	10.6	12.9	16.0	17.7	19.4	21	23			
T2 / 0X		0.56	0.58	0.65	0.67	0.67	0.38	0.45	0.47	0.49	0.50	0.26	028	0.30	0.37	0.39	0.60	0.61	0.62	0.63	0.63			
T2/00		1.1	1.1	1.3	1.4	1.4	0.63	0.81	0.86	0.90	0.95	0.48	0.53	0.57	0.75	0.82	1.2	1.2	1.3	1.3	1.3			
T2/01		1.7	1.9	2.8	3.3	3.6	0.95	1.5	1.7	1.9	2.0	0.74	0.86	1.0	1.7	2.0	2.6	2.9	3.1	3.4	3.6			
T2/02	55	2.3	2.6	4.1	5.0	5.4	1.2	2.1	2.4	2.7	2.9	0.82	1.0	1.3	2.4	2.9	3.8	4.2	4.7	5.1	5.6			
T2 / 03		4.3	4.8	7.4	8.9	9.6	2.2	3.8	4.3	4.8	5.3	1.5	1.8	2.2	4.2	5.3	6.8	7.5	8.3	9.1	9.9			
T2/04		6.4	7.2	11.0	13.3	14.4	3.4	5.7	6.4	7.2	7.9	2.4	2.9	3.5	6.3	7.8	10.1	11.3	12.4	13.7	14.9			
T2 / 05		8.1	9.1	14.0	16.7	18.1	4.2	7.0	8.0	9.0	10.0	3.0	3.7	4.4	7.9	9.9	12.8	14.2	15.7	17.2	18.7			
T2/06		9.9	11.1	17.0	20	22	5.2	8.7	9.8	11.0	12.1	3.8	4.6	5.4	9.7	12.1	15.6	17.3	19.1	21	23			

³⁾ Temp. de condensacion en el punto de burbuja.

Factor de corrección

Refrigerante		Subenfriamiento [K]													
	2	4	10	15	20	25	30	35	40	45	50				
R22	0.98	1	1.06	1.11	1.15	1.20	1.25	1.30	1.35	139	1.44				
R1 34a	0.98	1	1.08	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.54				
R404A/R507	0.96	1	1.10	1.20	1.29	1.37	1.46	1.54	1.63	1.70	1.78				
R407C	0.97	1	1.08	1.14	1.21	1.27	1.33	139	1.45	1.51	1.57				

SE = 2 K → Factor de corrección 0,98
→ Potencia corregida
$$\dot{Q}_{E\,corr} = \frac{5,6\,kW}{0,98} = 5,71\,kW$$


CIFP NAUTICOPESQUERA	Curs: 2024-25
Avaluació Mòdul: OMF - solució	Grup:MAP33B
	Data:11/03/25

Se elige el orificio tamaño 04. A v_E = 0 ^{o}C y a v_C = 35 ^{o}C la capacidad del orificio 4 es de 5,8 kW y a v_C = 45 ^{o}C de

La capacidad a temperatura de condensación de 40 °C será superior a 5,8 kW.

Ejercicio 5:

Cuando las temperaturas de las cámaras se acercan a sus valores de consigna, uno de los compresores se desconecta, reduciendo la potencia frigorífica. ¿Cuál es el compònente que evita que el refrigerante vuelva de la descarga a la aspiración, pasando por el compresor?

CIFP NAUTICOPESQUERA	Curs: 2024-25
Avaluació Mòdul: OMF - solució	Grup:MAP33B
	Data:11/03/25

Las válvulas antiretorno, componente 3.

Ejercicio 6: 1 p

Un presostato de alta presión está ajustado a 20 bar (presión de consigna). El diferencial de presión es de 1 bar.

Indica la presión a la que desconecta y vuelve a conectar el compresor.

CIFP NAUTICOPESQUERA	Curs: 2024-25
Avaluació Mòdul: OMF - solució	Grup:MAP33B
	Data:11/03/25

Ejercicio 7: 1,5 p

Una VET para R404A, está diseñada para mantener un sobrecalentamiento de 7 K.

La presión de evaporación es de 8,3 bar (absoluta) e igual en la válvula que en la salida del evaporador (evaporador sin caída de presión).

a) ¿Cuál tiene que ser la temperatura del bulbo para que la membrana esté en equilibrio?

$$p_E = 8.3 \text{ bar -> } v_E = 10 \text{ °C}$$

 $v_{bulbo} = v_E + SC = 10 \text{ °C} + 7 \text{ K} = 17 \text{ °C}$

b) ¿A qué presión habría que ajustar el resorte para reducir el sobrecalentaminto a 3 K?

$$v_{bulbo} = v_E + SC = 10 \, ^oC + 3 \, K = 13 \, ^oC$$
 -> $p_{bulbo} = 9 \, \text{bar}$
con $p_{bulbo} = P_E + P_{resorte}$ -> $P_{resorte} = p_{bulbo} - P_E = 9 \, b \, ar - 8.3 \, b \, ar = 0.7 \, b \, ar$

c) ¿Cómo reacciona la válvula si el sobrecalentamiento sube?

Al subir el sobrecalentamiento, la presión del bulbo aumenta, abriendo la válvula y aumentando el caudal de refrigerante que entra al evaporador.

Puntuación máxima 9,5